Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis
T.E. Lallier, C.A. Whittaker, D.W. DeSimone
Development 1996 122: 2539-2554;
T.E. Lallier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.A. Whittaker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.W. DeSimone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The integrin alpha 6 subunit pairs with both the beta 1 and beta 4 subunits to form a subfamily of laminin receptors. Here we report the cDNA cloning and primary sequence for the Xenopus homologue of the mammalian integrin alpha 6 subunit. We present data demonstrating the spatial and temporal expression of alpha 6 mRNA and protein during early development. Initially, alpha 6 transcripts are expressed in the dorsal ectoderm and future neural plate at the end of gastrulation. Later in development, alpha 6 mRNAs are expressed in a variety of neural derivatives, including the developing sensory placodes (otic and olfactory) and commissural neurons within the neural tube. Integrin alpha 6 is also expressed in the elongating pronephric duct as well as a subset of the rhombencephalic neural crest, which will form the Schwann cells lining several cranial nerves (VII, VIII and X). In vivo expression of an alpha 6 antisense transcript in the animal hemisphere leads to a reduction in alpha 6 protein expression, a loss of adhesion to laminin, and severe defects in normal development. In 35% of cases, reduced levels of alpha 6 expression result in embryos that complete gastrulation normally but arrest at neurulation prior to the formation of the neural plate. In an additional 22% of cases, embryos develop with severe axial defects, including complete loss of head or tail structures. In contrast, overexpression of the alpha 6 subunit by injection of full-length mRNA has no apparent effect on embryonic development. Co-injection of antisense and sense plasmid constructs results in a partial rescue of the antisense-generated phenotypes. These data indicate that the integrin alpha 6 subunit is critical for the early development of the nervous system in amphibians.

Reference

    1. Bass B. L.,
    2. Weintraub H.
    (1987) A developmentally regulated activity that unwinds RNA duplexes. Cell 48, 607–613
    OpenUrlCrossRefPubMedWeb of Science
    1. Boucaut J. C.,
    2. Darribere T.,
    3. Poole T. J.,
    4. Aoyama H.,
    5. Yamada K. M.,
    6. Thiery J. P.
    (1984) Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol 99, 1822–1830
    OpenUrlAbstract/FREE Full Text
    1. Bronner-Fraser M.
    (1985) Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J. Cell Biol 101, 610–617
    OpenUrlAbstract/FREE Full Text
    1. Bronner-Fraser M.
    (1986) An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev. Biol 117, 528–536
    OpenUrlCrossRefPubMedWeb of Science
    1. Bronner-Fraser M.,
    2. Lallier T.
    (1988) A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo. J. Cell Biol 106, 1321–1329
    OpenUrlAbstract/FREE Full Text
    1. Bronner-Fraser M.,
    2. Artinger M.,
    3. Muschler J.,
    4. Horwitz A. F.
    (1992) Developmentally regulated expression of6 integrin in avian embryos. Development 115, 197–211
    OpenUrlAbstract
    1. Burnette W. M.
    (1981) Western Blotting: Electrophoretic transfer of protein from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem 112, 195–302
    OpenUrlCrossRefPubMedWeb of Science
    1. Calof A. L.,
    2. Campanero M. R.,
    3. O'Rear J. J.,
    4. Yurchenco P. D.,
    5. Lander A. D.
    (1994) Domain-specific activation of neuronal migration and neurite outgrowth-promoting activities of laminin. Neuron 13, 117–130
    OpenUrlCrossRefPubMedWeb of Science
    1. Christian J. L.,
    2. Moon R. T.
    (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Cohen J.,
    2. Johnson A. R.
    (1991) Differential effects of laminin and merosin on neurite outgrowth by developing retinal ganglion cells. J. Cell Sci 15, 1–7
    OpenUrlAbstract/FREE Full Text
    1. Cornish J. A.,
    2. Etkin L. D.
    (1993) The formation of the pronephric duct in Xenopus involves recruitment of posterior cells by migrating pronephric duct cells. Dev. Biol 159, 338–345
    OpenUrlCrossRefPubMedWeb of Science
    1. Damsky C. H.,
    2. Fitzgerald M. L.,
    3. Fisher S. J.
    (1992) Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J. Clinical Investigation 89, 210–222
    1. Darribere T.,
    2. Yamada K. M.,
    3. Johnson K. E.,
    4. Boucaut J. C.
    (1988) The 140-kDa fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev. Biol 126, 182–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Darribere T.,
    2. Guida K.,
    3. Larjava H.,
    4. Johnson K. E.,
    5. Yamada K. M.,
    6. Thiery J. P.,
    7. Boucaut J. C.
    (1990) In vivo analyses of integrin1 subunit function in fibronectin matrix assembly. J. Cell Biol 110, 1813–1823
    OpenUrlAbstract/FREE Full Text
    1. de Curtis I.,
    2. Quaranta V.,
    3. Tamura R. N.,
    4. Reichardt L. F.
    (1991) Laminin receptors in the retina: sequence analysis of the chick integrin6 subunit. Evidence for transcriptional and posttranslational regulation. J. Cell Biol 113, 405–416
    OpenUrlAbstract/FREE Full Text
    1. de Curtis I.,
    2. Reichardt L. F.
    (1993) Function and spatial distribution in developing chick retina of the laminin receptor6 1 and its isoforms. Development 118, 377–388
    OpenUrlAbstract
    1. Dedhar S.,
    2. Saulnier R.
    (1990) Alterations in integrin receptor expression on chemically transformed human cells: specific enhancement of laminin and collagen receptor complexes. J. Cell Biol 110, 481–489
    OpenUrlAbstract/FREE Full Text
    1. Delwel G. O.,
    2. Hogervorst F.,
    3. Kuikman I.,
    4. Paulsson M.,
    5. Timpl R.,
    6. Sonnenberg A.
    (1993) Expression and function of the cytoplasmic variants of the integrin6 subunit in transfected K562 cells. Activation-dependent adhesion and interaction with isoforms of laminin. J. Biol. Chem 268, 25865–25875
    OpenUrlAbstract/FREE Full Text
    1. DeSimone D. W.,
    2. Hynes R. O.
    (1988) Xenopus laevis integrins. Structural conservation and evolutionary divergence of integrinsubunits. J. Biol. Chem 263, 5333–5340
    OpenUrlAbstract/FREE Full Text
    1. DeSimone D. W.,
    2. Norton P. A.,
    3. Hynes R. O.
    (1992) Identification and characterization of alternatively spliced fibronectin mRNAs expressed in early Xenopus embryos. Dev. Biol 149, 357–369
    OpenUrlCrossRefPubMed
    1. DeSimone D. W.
    (1994) Adhesion and matrix in vertebrate development. [Review]. Current Opin. Cell Biol 6, 747–751
    OpenUrlCrossRefPubMedWeb of Science
    1. Devereux J.,
    2. Haeberli P.,
    3. Smithies O.
    (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12, 387–395
    1. Einheber S.,
    2. Milner T. A.,
    3. Giancotti F.,
    4. Salzer J. L.
    (1993) Axonal regulation of Schwann cell integrin expression suggests a role for6 4 in myelination. J. Cell Biol 123, 1223–1236
    OpenUrlAbstract/FREE Full Text
    1. Evans J. P.,
    2. Kay B. K.
    (1991) Biochemical fractionation of oocytes. Methods in Cell Biology 36, 133–148
    OpenUrlCrossRefPubMed
    1. Ferreiro B.,
    2. Harris W. A.
    (1994) Neurogenesis in Xenopus: a molecular genetic perspective. [Review]. Advances in Genetics 31, 29–78
    OpenUrlPubMed
    1. Fey J.,
    2. Hausen P.
    (1990) Appearance and distribution of laminin during development of Xenopus laevis. Differentiation 42, 144–152
    OpenUrlCrossRefPubMed
    1. Gawantka V.,
    2. Ellinger-Ziegelbauer H.,
    3. Hausen P.
    (1992) 1-integrin is a maternal protein that is inserted into all newly formed plasma membranes during early Xenopus embryogenesis. Development 115, 595–605
    OpenUrlAbstract
    1. Giebelhaus D. H.,
    2. Eib D. W.,
    3. Moon R. T.
    (1988) Antisense RNA inhibits expression of membrane skeleton protein 4. 1 during embryonic development of Xenopus. Cell 53, 601–615
    OpenUrlCrossRefPubMed
    1. Goodman S. L.
    (1992) 6 1 integrin and laminin E8: an increasingly complex simple story. Kidney International 41, 650–656
    OpenUrlPubMed
    1. Gurdon J. B.
    (1977) Methods for nuclear transplantation in amphibia. Methods in Cell Biology 16, 125–139
    OpenUrlCrossRefPubMed
    1. Harland R. M.
    (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods in Cell Biology 36, 685–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes R. O.
    (1992) Integrins: versatility, modulation, and signaling in cell adhesion. [Review]. Cell 69, 11–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes R. O.,
    2. Lander A. D.
    (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. [Review]. Cell 68, 303–322
    OpenUrlCrossRefPubMedWeb of Science
    1. Kay B. K.
    (1991) Xenopus laevis: Practical uses in cell and molecular biology. Injections of oocytes and embryos. Methods in Cell Biology 36, 663–669
    OpenUrlPubMed
    1. Korhonen M.,
    2. Ylanne J.,
    3. Laitinen L.,
    4. Virtanen I.
    (1990) The1- 6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J. Cell Biol 111, 1245–1254
    OpenUrlAbstract/FREE Full Text
    1. Korhonen M.,
    2. Ylanne J.,
    3. Laitinen L.,
    4. Cooper H. M.,
    5. Quaranta V.,
    6. Virtanen I.
    (1991) Distribution of the1- 6 integrin subunits in human developing and term placenta. Laboratory Investigation 65, 347–356
    OpenUrlPubMedWeb of Science
    1. Krieg P. A.,
    2. Melton D. A.
    (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Research 12, 7057–7070
    OpenUrlAbstract/FREE Full Text
    1. Krotoski D.,
    2. Bronner-Fraser M.
    (1990) Distribution of integrins and their ligands in the trunk of Xenopus laevis during neural crest cell migration. J. Exp. Zool 253, 139–150
    OpenUrlCrossRefPubMed
    1. Kurpakus M. A.,
    2. Quaranta V.,
    3. Jones J. C.
    (1991) Surface relocation of6 4 integrins and assembly of hemidesmosomes in an in vitro model of wound healing. J. Cell Biol 115, 1737–1750
    OpenUrlAbstract/FREE Full Text
    1. Laemmli U. K.
    (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685
    OpenUrlCrossRefPubMedWeb of Science
    1. Lallier T.,
    2. Leblanc G.,
    3. Artinger K. B.,
    4. Bronner-Fraser M.
    (1992) Cranial and trunk neural crest cells use different mechanisms for attachment to extracellular matrices. Development 116, 531–541
    OpenUrlAbstract
    1. Lallier T.,
    2. Deutzmann R.,
    3. Perris R.,
    4. Bronner-Fraser M.
    (1994) Neural crest cell interactions with laminin: structural requirements and localization of the binding site for1 1 integrin. Dev. Biol 162, 451–464
    OpenUrlCrossRefPubMedWeb of Science
    1. Lander A. D.,
    2. Fujii D. K.,
    3. Reichardt L. F.
    (1985) Purification of a factor that promotes neurite outgrowth: isolation of laminin and associated molecules. J. Cell Biol 101, 898–913
    OpenUrlAbstract/FREE Full Text
    1. Lander A. D.,
    2. Fujii D. K.,
    3. Reichardt L. F.
    (1985) Laminin is associated with the ‘neurite outgrowth-promoting factors’ found in conditioned media. Proc. Natn Acad. Sci. USA 82, 2183–2187
    OpenUrlAbstract/FREE Full Text
    1. Lee E. C.,
    2. Lotz M. M.,
    3. Steele G. D., Jr.,
    4. Mercurio A. M.
    (1992) The integrin6 4 is a laminin receptor. J. Cell Biol 117, 671–678
    OpenUrlAbstract/FREE Full Text
    1. Lynch K.,
    2. Fraser S. E.
    (1990) Cell migration in the formation of the pronephric duct in Xenopus laevis. Dev. Biol 142, 283–292
    OpenUrlCrossRefPubMed
    1. Marcantonio E. E.,
    2. Guan J. L.,
    3. Trevithick J. E.,
    4. Hynes R. O.
    (1990) Mapping of the functional determinants of the integrin1 cytoplasmic domain by site-directed mutagenesis. Cell Regulation 1, 597–604
    OpenUrlPubMedWeb of Science
    1. Nakatsuji N.
    (1986) Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin. J. Cell Sc 86, 109–118
    OpenUrlAbstract/FREE Full Text
    1. Newport J.,
    2. Kirschner M.
    (1982) A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686
    OpenUrlCrossRefPubMedWeb of Science
    1. Niehrs C.,
    2. Keller R.,
    3. Cho K. W. Y.,
    4. DeRobertis E. M.
    (1993) The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491–503
    OpenUrlCrossRefPubMedWeb of Science
    1. Noakes P. G.,
    2. Gautam M.,
    3. Mudd J.,
    4. Sanes J. R.,
    5. Merlie J. P.
    (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin2. Nature 374, 258–262
    OpenUrlCrossRefPubMed
    1. Rahilly M. A.,
    2. Fleming S.
    (1992) Differential expression of integrinchains by renal epithelial cells. J. Pathology 167, 327–334
    OpenUrlCrossRefPubMedWeb of Science
    1. Ransom D. G.,
    2. Hens M. D.,
    3. DeSimone D. W.
    (1993) Integrin expression in early amphibian embryos: cDNA cloning and characterization of Xenopus1, 2,3, and 6 subunits. Dev. Biol 160, 265–275
    OpenUrlCrossRefPubMed
    1. Rebagliati M. R.,
    2. Melton D. A.
    (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48, 599–605
    OpenUrlCrossRefPubMedWeb of Science
    1. Sanger F.,
    2. Nicklen S.,
    3. Coulson A. R.
    (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natn Acad. Sci. USA 74, 5463–5467
    OpenUrlAbstract/FREE Full Text
    1. Shaw L. M.,
    2. Messier J. M.,
    3. Mercurio A. M.
    (1990) The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the6 1 integrin. J. Cell Biol 110, 2167–2174
    OpenUrlAbstract/FREE Full Text
    1. Shaw L. M.,
    2. Lotz M. M.,
    3. Mercurio A. M.
    (1993) Inside-out integrin signaling in macrophages. Analysis of the role of the6A 1 and6B 1 integrin variants in laminin adhesion by cDNA expression in an6 integrin-deficient macrophage cell line. J. Biol. Chem 268, 11401–11408
    OpenUrlAbstract/FREE Full Text
    1. Shaw L. M.,
    2. Mercurio A. M.
    (1994) Regulation of cellular interactions with laminin by integrin cytoplasmic domains: the A and B structuralvariants of the6 1 integrin differentially modulate the adhesive strength, morphology, and migration of macrophages. Molec. Biol. Cell 5, 679–690
    OpenUrlAbstract/FREE Full Text
    1. Solowska J.,
    2. Guan J. L.,
    3. Marcantonio E. E.,
    4. Trevithick J. E.,
    5. Buck C. A.,
    6. Hynes R. O.
    (1989) Expression of normal and mutant avian integrin subunits in rodent cells [published erratum appears in J Cell Biol 1989 Oct; 109(4 Pt 1):1187]. J. Cell Biol 109, 853–861
    OpenUrlAbstract/FREE Full Text
    1. Sonnenberg A.,
    2. Modderman P. W.,
    3. Hogervorst F.
    (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336, 487–489
    OpenUrlCrossRefPubMed
    1. Sonnenberg A.,
    2. Calafat J.,
    3. Janssen H.,
    4. Daams H.,
    5. van der Raaij-Helmer L. M.,
    6. Falcioni R.,
    7. Kennel S. J.,
    8. Aplin J. D.,
    9. Baker J.,
    10. Loizidou M.,
    11. et al.
    (1991) Integrin6/ 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol 113, 907–917
    OpenUrlAbstract/FREE Full Text
    1. Sorokin L.,
    2. Sonnenberg A.,
    3. Aumailley M.,
    4. Timpl R.,
    5. Ekblom P.
    (1990) Recognition of the laminin E8 cell-binding site by an integrin possessing the6 subunit is essential for epithelial polarization in developing kidney tubules. J. Cell Biol 111, 1265–1273
    OpenUrlAbstract/FREE Full Text
    1. Southern P. J.,
    2. Berg P.
    (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Molec. Applied Genet 1, 327–341
    OpenUrlPubMed
    1. Spencer M.,
    2. Giebelhaus D. H.,
    3. Kelly G. M.,
    4. Bicknell J.,
    5. Florio S. K.,
    6. Milam A. H.,
    7. Moon R. T.
    (1990) Membrane skeleton protein 4. 1 in developing Xenopus: expression in postmitotic cells of the retina. Dev. Biol 139, 279–291
    OpenUrlCrossRefPubMedWeb of Science
    1. Steinbesser H.,
    2. Fainsod A.,
    3. Niehrs C.,
    4. Sasai Y.,
    5. DeRobertis E. M.
    (1995) The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J 14, 5230–5243
    OpenUrlPubMedWeb of Science
    1. Sutherland A. E.,
    2. Calarco P. G.,
    3. Damsky C. H.
    (1993) Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119, 1175–1186
    OpenUrlAbstract
    1. Tamura R. N.,
    2. Rozzo C.,
    3. Starr L.,
    4. Chambers J.,
    5. Reichardt L. F.,
    6. Cooper H. M.,
    7. Quaranta V.
    (1990) Epithelial integrin6 4: complete primary structure of6 and variant forms of 4. J. Cell Biol 111, 1593–1604
    OpenUrlAbstract/FREE Full Text
    1. Tamura R. N.,
    2. Cooper H. M.,
    3. Collo G.,
    4. Quaranta V.
    (1991) Cell type-specific integrin variants with alternativechain cytoplasmic domains. Proc. Natn Acad. Sci. USA 88, 10183–10187
    OpenUrlAbstract/FREE Full Text
    1. Timpl R.,
    2. Brown J. C.
    (1994) The laminins. [Review]. Matrix Biology 14, 275–281
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomaselli K. J.,
    2. Reichardt L. F.,
    3. Bixby J. L.
    (1986) Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J. Cell Biol 103, 2659–2672
    OpenUrlAbstract/FREE Full Text
    1. Tucker R. P.,
    2. Edwards B. F.,
    3. Erickson C. A.
    (1985) Tension in the culture dish: microfilament organization and migratory behavior of quail neural crest cells. Cell Motility 5, 225–237
    OpenUrlCrossRefPubMed
    1. Vize P. D.,
    2. Melton D. A.,
    3. Hemmati-Brivanlou A.,
    4. Harland R. M.
    (1991) Assays for gene function in developing Xenopus embryos. Methods in Cell Biol 36, 367–387
    OpenUrlPubMed
    1. von Heijne G.
    (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14, 4683–4690
    OpenUrlAbstract/FREE Full Text
    1. Walter J.,
    2. Kern-Veits B.,
    3. Huf J.,
    4. Stolze B.,
    5. Bonhoeffer F.
    (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696
    OpenUrlAbstract/FREE Full Text
    1. Whittaker C. A.,
    2. DeSimone D. W.
    (1993) Integrinsubunit mRNAs are differentially expressed in early Xenopus embryos. Development 117, 1239–1249
    OpenUrlAbstract
    1. Wormington M.
    (1991) Preparation of synthetic mRNAs and analyses of translational efficiency in microinjected Xenopus oocytes. Methods in Cell Biology 36, 167–183
    OpenUrlCrossRefPubMed
    1. Yang J. T.,
    2. Rayburn H.,
    3. Hynes R. O.
    (1993) Embryonic medosermal defects in5 integrin-decicient mice. Development 119, 1093–1105
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis
T.E. Lallier, C.A. Whittaker, D.W. DeSimone
Development 1996 122: 2539-2554;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis
T.E. Lallier, C.A. Whittaker, D.W. DeSimone
Development 1996 122: 2539-2554;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992