Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls
M. Catala, M.A. Teillet, E.M. De Robertis, M.L. Le Douarin
Development 1996 122: 2599-2610;
M. Catala
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Teillet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.M. De Robertis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.L. Le Douarin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The spinal cord of thoracic, lumbar and caudal levels is derived from a region designated as the sinus rhomboidalis in the 6-somite-stage embryo. Using quail/chick grafts performed in ovo, we show the following. (1) The floor plate and notochord derive from a common population of cells, located in Hensen's node, which is equivalent to the chordoneural hinge (CNH) as it was defined at the tail bud stage. (2) The lateral walls and the roof of the neural tube originate caudally and laterally to Hensen's node, during the regression of which the basal plate anlage is bisected by floor plate tissue. (3) Primary and secondary neurulations involve similar morphogenetic movements but, in contrast to primary neurulation, extensive bilateral cell mixing is observed on the dorsal side of the region of secondary neurulation. (4) The posterior midline of the sinus rhomboidalis gives rise to somitic mesoderm and not to spinal cord. Moreover, mesodermal progenitors are spatially arranged along the rest of the primitive streak, more caudal cells giving rise to more lateral embryonic structures. Together with the results reported in our study of tail bud development (Catala, M., Teillet, M.-A. and Le Douarin, N.M. (1995). Mech. Dev. 51, 51–65), these results show that the mechanisms that preside at axial elongation from the 6-somite stage onwards are fundamentally similar during the complete process of neurulation.

Reference

    1. Artinger K. B.,
    2. Bronner-Fraser M.
    (1993) Delayed formation of the floor plate after ablation of the avian notochord. Neuron 11, 1147–1161
    OpenUrlCrossRefPubMedWeb of Science
    1. Bortier H.,
    2. Vakaet L. C. A.
    (1992) Fate mapping the neural plate and the intraembryonic mesoblast in the upper layer of the chicken blastoderm with xenografting and time-lapse videography. In Gastrulation (ed. C. Stern and P. Ingham). Development 1992, 93–97
    1. Catala M.,
    2. Teillet M.-A.,
    3. Le Douarin N. M.
    (1995) Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech. Dev 51, 51–65
    OpenUrlCrossRefPubMedWeb of Science
    1. Criley B. B.
    (1969) Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J. Morph 128, 465–502
    OpenUrlCrossRefPubMed
    1. Detwiler S. R.,
    2. Kehoe K.
    (1939) Further observations on the origin of the sheath cells of Schwann. J. Exp. Zool 81, 415–435
    OpenUrlCrossRef
    1. Doniach T.
    (1993) Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system. J. Neurobiol 24, 1256–1275
    OpenUrlCrossRefPubMedWeb of Science
    1. Feulgen R.,
    2. Rossenbeck H.
    (1924) Mikroskopisch chemischer Nachweis einer Nucleinsaure vom Typus der Thymonucleinsaure un die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe Seyler's Z. Physiol. Chem 135, 203–252
    OpenUrlCrossRefWeb of Science
    1. Garcia-Martinez V.,
    2. Alvarez I. S.,
    3. Schoenwolf G. C.
    (1993) Locations of the ectodermal and non-ectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J. Exp. Zool 267, 431–446
    OpenUrlCrossRefPubMedWeb of Science
    1. Gont L. K.,
    2. Steinbeisser H.,
    3. Blumberg B.,
    4. De Robertis E. M.
    (1993) Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late balstopore lip. Development 119, 991–1004
    OpenUrlAbstract
    1. Grabowski C. T.
    (1956) The effects of the excision of Hensen's node on the early development of the chick embryo. J. Exp. Zool 133, 301–343
    OpenUrlCrossRef
    1. Hamburger V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morph 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Hirano S.,
    2. Fuse S.,
    3. Sohal G. S.
    (1991) The effect of the floor plate on pattern and polarity in the developing central nervous system. Science 251, 310–313
    OpenUrlAbstract/FREE Full Text
    1. Keller R.,
    2. Cooper M. S.,
    3. Danilchik M.,
    4. Tibbetts P.,
    5. Wilson P. A.
    (1989) Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool 251, 134–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimmel C. B.,
    2. Warga R. M.,
    3. Kane D. A.
    (1994) Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265–274
    OpenUrlAbstract
    1. Lawson K. A.,
    2. Meneses J. J.,
    3. Pedersen R. A.
    (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911
    OpenUrlAbstract
    1. Leber S. M.,
    2. Sanes J. R.
    (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J. Neuroscience 15, 1236–1248
    OpenUrlAbstract
    1. Le Douarin N. M.
    (1969) Particularites du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularites comme ‘marquage biologique’ dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenese. Bull. Biol. Fr. Belg 103, 435–452
    OpenUrlPubMed
    1. Monsoro-Burq A.-H.,
    2. Bontoux M.,
    3. Teillet M.-A.,
    4. Le Douarin N. M.
    (1994) Heterogeneity in the development of the vertebra. Proc. Natl. Acad. Sci. USA 91, 10435–10439
    OpenUrlAbstract/FREE Full Text
    1. Nicolet G.
    (1965) Etude autoradiographique de la destination des cellules invaginees au niveau du noeud de Hensen de la ligne primitive achevee de l'embryon de poulet. Acta Embryol. Morph. Exp 8, 213–220
    1. Nicolet G.
    (1970) Analyse autoradiographique de la localisation des differentes ebauches presomptives dans la ligne primitive de l'embryon de poulet. J. Embryol. Exp. Morph 23, 79–108
    OpenUrl
    1. Nicolet G.
    (1971) Avian gastrulation. Adv. Morph 9, 231–262
    OpenUrlCrossRefPubMed
    1. Nieuwkoop P. D.
    (1952) Activation and organization of the central nervous system in Amphibians. I. Induction and activation. J. Exp. Zool 120, 1–32
    OpenUrlCrossRef
    1. Nieuwkoop P. D.
    (1952) Activation and organization of the central nervous system in Amphibians. II. Differentiation and organization. J. Exp. Zool 120, 33–81
    OpenUrlCrossRef
    1. Nieuwkoop P. D.
    (1952) Activation and organization of the central nervoussystem in Amphibians. III. Synthesis of a new working hypothesis. J. Exp. Zool 120, 83–108
    OpenUrlCrossRef
    1. Pasteels J.
    (1937) Etudes sur la gastrulation des vertebres meroblastiques. III. Oiseaux. IV. Conclusions generales. Arch. Biol 48, 381–488
    OpenUrl
    1. Placzek M.
    (1995) The role of notochord and floor plate in inductive interactions. Curr. Op. Genet. Dev 5, 499–506
    OpenUrlCrossRefPubMedWeb of Science
    1. Rosenquist G. C.
    (1983) The chorda center in Hensen's node of the chick embryo. Anat. Rec 207, 349–355
    OpenUrlCrossRefPubMed
    1. Rudnick D.
    (1944) Early history and mechanics of the chick blastoderm. Quart. Rev. Biol 19, 187–212
    OpenUrlCrossRef
    1. Ruiz i Altaba A.
    (1993) Induction and axial patterning of the neural plate: planar and vertical signals. J. Neurobiol 24, 1276–1304
    OpenUrlCrossRefPubMedWeb of Science
    1. Sausedo R. A.,
    2. Schoenwolf G. C.
    (1993) Cell behaviors underlying notochord formation and extension in avian embryos: quantitative and immunocytochemical studies. Anat. Rec 237, 58–70
    OpenUrlCrossRefPubMed
    1. Sausedo R. A.,
    2. Schoenwolf G. C.
    (1994) Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos. Anat. Rec 239, 103–112
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.
    (1977) Tail (end) bus contributions to the posterior region of the chick embryo. J. Exp. Zool 201, 227–246
    OpenUrlCrossRef
    1. Schoenwolf G. C.
    (1978) Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo. Anat. Rec 192, 289–296
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.,
    2. Alvarez I. S.
    (1992) Role of cell rearrangement in axial morphogenesis. Current Topics in Dev. Biol 27, 129–173
    OpenUrlPubMedWeb of Science
    1. Schoenwolf G. C.,
    2. Garcia-Martinez V.,
    3. Dias M. S.
    (1992) Mesoderm movement and fate during avian gastrulation and neurulation. Dev. Dynamics 193, 235–248
    OpenUrlPubMedWeb of Science
    1. Selleck M. A. J.,
    2. Bronner-Fraser M.
    (1995) Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 121, 525–538
    OpenUrlAbstract
    1. Selleck M. A. J.,
    2. Stern C. D.
    (1991) Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development 112, 615–626
    OpenUrlAbstract
    1. Smith J. L.,
    2. Gesteland K. M.,
    3. Schoenwolf G. C.
    (1994) Prospective fate map of the mouse primitive streak at 7. 5 days of gestation. Dev. Dynamics 201, 279–289
    OpenUrlPubMed
    1. Smith J. L.,
    2. Schoenwolf G. C.
    (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J. Exp. Zool 250, 49–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Spratt N. T.
    (1955) Analysis of the organizer center in the early chick embryo. I. Localization of prospective notochord and somite cells. J. Exp. Zool 128, 121–163
    OpenUrlCrossRef
    1. Spratt N. T.
    (1957) Analysis of the organizer center in the early chick embryo. II. Studies of the mechanics of notochord elongation and somite formation. J. Exp. Zool 134, 577–612
    1. Stern C. D.,
    2. Jaques K. F.,
    3. Lim T.-M.,
    4. Fraser S. E.,
    5. Keynes R. J.
    (1991) Segmental lineage restrictions in the chick embryo spinal cord depend on the adjacent somites. Development 113, 239–244
    OpenUrlAbstract
    1. Sulik K.,
    2. Dehart D. B.,
    3. Inagaki T.,
    4. Carson J. L.,
    5. Vrablic T.,
    6. Gesteland K.,
    7. Schoenwolf G. C.
    (1994) Morphogenesis of the murine node and notochordal plate. Dev. Dynamics 201, 260–278
    OpenUrlCrossRefPubMedWeb of Science
    1. Tam P. P. L.,
    2. Beddington R. S. P.
    (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99, 109–126
    OpenUrlAbstract
    1. van Straaten H. W. M.,
    2. Hekking J. W. M.
    (1991) Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat. Embryol 184, 55–63
    OpenUrlCrossRefPubMed
    1. van Straaten H. W. M.,
    2. Hekking J. W. M.,
    3. Wiertz-Hoessels E. J. L. M.,
    4. Thors F.,
    5. Drukken J.
    (1988) Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo. Anat. Embryol 177, 317–324
    OpenUrlCrossRefPubMed
    1. Wilson V.,
    2. Beddington R. S. P.
    (1996) Cell fate and morphogenetic movement in the late mouse primitive streak. Mech. Dev 55, 79–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolff E.
    (1935) Les consequences de la lesion de la region du noeud de Hensen sur le developpement du poulet. C. R. Soc. Biol 118, 77–80
    OpenUrl
    1. Wolff E.
    (1935) Sur la formation d'une rangee axiale de somites chez l'embryon de poulet apres irradiation du noeud de Hensen. C. R. Soc. Biol 118, 452–453
    OpenUrl
    1. Woo K.,
    2. Fraser S. E.
    (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121, 2595–2609
    OpenUrlAbstract
    1. Yamada T.,
    2. Placzek M.,
    3. Tanaka H.,
    4. Dodd J.,
    5. Jessell T. M.
    (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Yuan S.,
    2. Darnell D. K.,
    3. Schoenwolf G. C.
    (1995) Identification of inducing, responding, and suppressing regions in an experimental model of notochord formation in avian embryos. Dev. Biol 172, 567–584
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls
M. Catala, M.A. Teillet, E.M. De Robertis, M.L. Le Douarin
Development 1996 122: 2599-2610;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls
M. Catala, M.A. Teillet, E.M. De Robertis, M.L. Le Douarin
Development 1996 122: 2599-2610;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992