Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The hardwiring of development: organization and function of genomic regulatory systems
M.I. Arnone, E.H. Davidson
Development 1997 124: 1851-1864;
M.I. Arnone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.H. Davidson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The gene regulatory apparatus that directs development is encoded in the DNA, in the form of organized arrays of transcription factor target sites. Genes are regulated by interactions with multiple transcription factors and the target sites for the transcription factors required for the control of each gene constitute its cis-regulatory system. These systems are remarkably complex. Their hardwired internal organization enables them to behave as genomic information processing systems. Developmental gene regulatory networks consist of the cis-regulatory systems of all the relevant genes and the regulatory linkages amongst them. Though there is yet little explicit information, some general properties of genomic regulatory networks have become apparent. The key to understanding how genomic regulatory networks are organized, and how they work, lies in experimental analysis of cis-regulatory systems at all levels of the regulatory network.

REFERENCES

    1. Andersen B.,
    2. Rosenfeld M. G.
    (1994) Pit-1 determines cell types during development of the anterior pituitary gland. J. Biol. Chem 269, 29335–29338
    OpenUrlFREE Full Text
    1. Arnosti D. N.,
    2. Barolo S.,
    3. Levine M.,
    4. Small S.
    (1996) The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development 122, 205–214
    OpenUrlAbstract
    1. Baumgartner S.,
    2. Noll M.
    (1991) Network of interactions among pair-rule genes regulating paired expression during primordial segmentation of Drosophila. Mech. Dev 33, 1–18
    1. Bender W.,
    2. Akam M.,
    3. Karch F.,
    4. Beachy P. A.,
    5. Peifer M.,
    6. Spierer P.,
    7. Lewis E. B.,
    8. Hogness D. S.
    (1983) Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 23–29
    OpenUrlAbstract/FREE Full Text
    1. Biggin M. D.,
    2. Tjian R.
    (1988) Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53, 699–711
    OpenUrlCrossRefPubMedWeb of Science
    1. Britten R. J.,
    2. Davidson E. H.
    (1969) Gene regulation for higher cells: A theory. Science 165, 349–358
    OpenUrlFREE Full Text
    1. Britten R. J.,
    2. Davidson E. H.
    (1971) Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol 46, 111–138
    OpenUrlCrossRefPubMed
    1. Calzone F. J.,
    2. Theze N.,
    3. Thiebaud P.,
    4. Hill R. L.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1988) Developmental appearance of factors that bind specifically to cis -regulatory sequences of a gene expressed in the sea urchin embryo. Genes Dev 2, 1074–1088
    OpenUrlAbstract/FREE Full Text
    1. Calzone F. J.,
    2. Höög C.,
    3. Teplow D. B.,
    4. Cutting A. E.,
    5. Zeller R. W.,
    6. Britten R. J.,
    7. Davidson E. H.
    (1991) Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA binding protein. Development 112, 335–350
    OpenUrlAbstract
    1. Carmena A.,
    2. Bate M.,
    3. Jimenez F.
    (1995) lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev 9, 2373–2383
    OpenUrlAbstract/FREE Full Text
    1. Christy R. J.,
    2. Kaestner K. H.,
    3. Geiman D. E.,
    4. Lane M. D.
    (1991) CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA 88, 2593–2597
    OpenUrlAbstract/FREE Full Text
    1. Coffman J. A.,
    2. Moore J. G.,
    3. Calzone F. J.,
    4. Hood L. E.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1992) Automated sequential affinity chromatography of sea urchin embryo DNA binding proteins. Mol. Marine Biol. Biotech 1, 136–146
    OpenUrlPubMed
    1. Coffman J. A.,
    2. Kirchhamer C. V.,
    3. Harrington M. G.,
    4. Davidson E. H.
    (1996) SpRunt-1, a new member of the Runt-domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIa gene in sea urchin embryos. Dev. Biol 174, 43–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Damen W. G. M.,
    2. van Loon A. E.
    (1996) Multiple cis -acting elements act cooperatively in directing trochoblast-specific expression of the-tubulin-4 gene in Patella embryos. Dev. Biol 176, 313–324
    OpenUrlCrossRefPubMed
    1. Davidson E. H.
    (1990) How embryos work: A comparative view of diverse modes of cell fate specification. Development 108, 365–389
    OpenUrlAbstract
    1. Davidson E. H.
    (1991) Spatial mechanisms of gene regulation in metazoan embryos. Development 113, 1–26
    OpenUrlAbstract
    1. Davidson E. H.
    (1993) Later embryogenesis: regulatory circuitry in morphogenetic fields. Development 118, 665–690
    OpenUrlAbstract
    1. Davidson E. H.
    (1994) Molecular biology of embryonic development: How far have we come in the last ten years?. BioEssays 16, 603–615
    OpenUrlCrossRefPubMedWeb of Science
    1. Davidson E. H.,
    2. Peterson K. J.,
    3. Cameron R. A.
    (1995) Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science 270, 1319–1325
    OpenUrlAbstract/FREE Full Text
    1. Dearolf C. R.,
    2. Topol J.,
    3. Parker C. S.
    (1989) Transcriptional control of Drosophila fushi tarazu zebra stripe expression. Genes Dev 3, 384–398
    OpenUrlAbstract/FREE Full Text
    1. deBoer E.,
    2. Antoniou M.,
    3. Mignotte V.,
    4. Wall L.,
    5. Grosveld F.
    (1988) The human-globin promoter; nucler protein factors and erythroid specific induction of transcription. EMBO J 7, 4203–4212
    OpenUrlPubMedWeb of Science
    1. Donoviel D. B.,
    2. Shield M. A.,
    3. Buskin J. N.,
    4. Haugen H. S.,
    5. Clegg C. H.,
    6. Hauschka S. D.
    (1996) Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice. Mol. Cell. Biol 16, 1649–1658
    OpenUrlAbstract/FREE Full Text
    1. Egan C. R.,
    2. Chung M. A.,
    3. Allen F. L.,
    4. Heschl M. F. P.,
    5. Van Buskirk C. L.,
    6. McGhee J. D.
    (1995) A gut-to-pharynx/tail switch in embryonic expression of the Caenorhabditis elegans ges-1 gene centers on two GATA sequences. Dev. Biol 170, 397–419
    OpenUrlCrossRefPubMedWeb of Science
    1. Franks R. R.,
    2. Anderson R.,
    3. Moore J. G.,
    4. Hough-Evans B. R.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1990) Competitive titration in living sea urchin embryos of regulatory factors required for expression of the CyIIIa actin gene. Development 110, 31–40
    OpenUrlAbstract
    1. Frasch M.
    (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374, 464–467
    OpenUrlCrossRefPubMedWeb of Science
    1. Frudakis T. N.,
    2. Wilt F.
    (1995) Two cis elements collaborate to spatially repress transcription from a sea urchin promoter. Dev. Biol 172, 230–241
    OpenUrlCrossRefPubMed
    1. Gan L.,
    2. Wessel G. M.,
    3. Klein W. H.
    (1990) Regulatory elements from the related spec genes of Strongylocentrotus purpuratus yield different spatial patterns with a lac Z reporter gene. Dev. Biol 142, 346–359
    OpenUrlCrossRefPubMedWeb of Science
    1. Georgopoulos K.,
    2. Galson D.,
    3. Terhorst C.
    (1990) Tissue-specific nuclear factors mediate expression of the CD3gene during T-cell development. EMBO J 9, 109–115
    OpenUrlPubMedWeb of Science
    1. Georgopoulos K.,
    2. Moore D. D.,
    3. Derfler B.
    (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T-cell commitment. Science 258, 808–812
    OpenUrlAbstract/FREE Full Text
    1. Gerard M.,
    2. Duboule D.,
    3. Zákány J.
    (1993) Structure and activity of regulatory elements involved in the activation of the Hoxd-11 gene during late gastrulation. EMBO J 12, 3539–3550
    OpenUrlPubMedWeb of Science
    1. Giese K.,
    2. Kingsley C.,
    3. Kirshner R.,
    4. Grosschedl R.
    (1995) Assembly and function of a TCRenhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev 9, 995–1008
    OpenUrlAbstract/FREE Full Text
    1. Godin R. E.,
    2. Urry L. A.,
    3. Ernst S. G.
    (1996) Alternative splicing of the Endo16 transcript produces differentially expressed mRNAs during sea urchin gastrulation. Dev. Biol 179, 148–159
    OpenUrlCrossRefPubMed
    1. Gomez-Skarmeta J. L.,
    2. Rodríguez I.,
    3. Martínez C.,
    4. Culí J.,
    5. Ferres-Marco D.,
    6. Beamonte D.,
    7. Modolell J.
    (1995) Cis -regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev 9, 1869–1882
    OpenUrlAbstract/FREE Full Text
    1. Gray S.,
    2. Levine M.
    (1996) Transcriptional repression in development. Curr. Opin. Cell Biol 8, 358–364
    OpenUrlCrossRefPubMedWeb of Science
    1. Gray S.,
    2. Levine M.
    (1996) Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev 10, 700–710
    OpenUrlAbstract/FREE Full Text
    1. Gray S.,
    2. Szymanski P.,
    3. Levine M.
    (1994) Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes Dev 8, 1829–1838
    OpenUrlAbstract/FREE Full Text
    1. Gutjahr T.,
    2. Vanario-Alonso C. E.,
    3. Pick L.,
    4. Noll M.
    (1994) Multiple regulatory elements direct the complex expression pattern of the Drosophila segmentation gene paired. Mech. Dev 48, 119–128
    OpenUrlCrossRefPubMedWeb of Science
    1. Harding K.,
    2. Hoey T.,
    3. Warrior R.,
    4. Levine M.
    (1989) Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J 8, 1205–1212
    OpenUrlPubMedWeb of Science
    1. Hiromi Y.,
    2. Kuroiwa A.,
    3. Gehring W. J.
    (1985) Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43, 603–613
    OpenUrlCrossRefPubMedWeb of Science
    1. Hoch M.,
    2. Schröder C.,
    3. Seifert E.,
    4. Jäckle H.
    (1990) Cis -acting control elements for Kruppel expression in the Drosophila embryo. EMBO J 9, 2587–2595
    OpenUrlPubMedWeb of Science
    1. Hough-Evans B. R.,
    2. Franks R. R.,
    3. Zeller R. W.,
    4. Britten R. J.,
    5. Davidson E. H.
    (1990) Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo. Development 110, 41–50
    OpenUrlAbstract
    1. Howard K. R.,
    2. Struhl G.
    (1990) Decoding positional information: regulation of the pair-rule gene hairy. Development 110, 1223–1231
    OpenUrlAbstract/FREE Full Text
    1. Huang J.-D.,
    2. Schwyter D. H.,
    3. Shirokawa J. M.,
    4. Courey A. J.
    (1993) The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev 7, 694–704
    OpenUrlAbstract/FREE Full Text
    1. Huang J.-D.,
    2. Dubnicoff T.,
    3. Liaw G.-J.,
    4. Bai Y.,
    5. Valentine S. A.,
    6. Shirokawa J. M.,
    7. Lengyel J. A.,
    8. Courey A. J.
    (1995) Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev 9, 3177–3189
    OpenUrlAbstract/FREE Full Text
    1. Ip Y. T.,
    2. Park R. E.,
    3. Kosman D.,
    4. Bier E.,
    5. Levine M.
    (1992) The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev 6, 1728–1739
    OpenUrlAbstract/FREE Full Text
    1. Ip Y. T.,
    2. Park R. E.,
    3. Kosman D.,
    4. Yazdanbakhsh K.,
    5. Levine M.
    (1992) dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev 6, 1518–1530
    OpenUrlAbstract/FREE Full Text
    1. Jäckle H.,
    2. Hoch M.,
    3. Pankratz M. J.,
    4. Gerwin N.,
    5. Sauer F.,
    6. Bronner G.
    (1992) Transcriptional control by Drosophila gap genes. J. Cell Sci. Suppl 16, 39–51
    OpenUrlAbstract/FREE Full Text
    1. Jackson P. D.,
    2. Hoffman F. M.
    (1994) Embryonic expression patterns of the Drosophiladecapentaplegic gene: separate regulatory elements control blastoderm expression and lateral ectodermal expression. Dev. Dyn 199, 28–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Jackson P. D.,
    2. Evans T.,
    3. Nickol J. M.,
    4. Felsenfeld G.
    (1989) Developmental modulation of protein binding to-globin gene regulatory sites within chicken erythrocyte nuclei. Genes Dev 3, 1860–1873
    OpenUrlAbstract/FREE Full Text
    1. Kirchhamer C. V.,
    2. Davidson E. H.
    (1996) Spatial and temporal information processing in the sea urchin embryo: Modular and intramodularorganization of the CyIIIa gene cis -regulatory system. Development 122, 333–348
    OpenUrlAbstract
    1. Kirchhamer C. V.,
    2. Yuh C.-H.,
    3. Davidson E. H.
    (1996) Modular cis -regulatory organization of developmentally expressed genes: Two genes transcribed territorially in the sea urchin embryo, and additional examples. Proc. Natl. Acad. Sci. USA 93, 9322–9328
    OpenUrlAbstract/FREE Full Text
    1. Kirchhamer C. V.,
    2. Bogarad L. D.,
    3. Davidson E. H.
    (1996) Developmental expression of synthetic cis -regulatory systems composed of spatial control elements from two different genes. Proc. Natl. Acad. Sci. USA 93, 13849–13854
    OpenUrlAbstract/FREE Full Text
    1. Kozlowski D. J.,
    2. Gagnon M. L.,
    3. Marchant J. K.,
    4. Reynolds S. D.,
    5. Angerer L. M.,
    6. Angerer R. C.
    (1996) Characterization of a SpAN promoter sufficient to mediate correct spatial regulation along the animal-vegetal axis of the sea urchin embryo. Dev. Biol 176, 95–107
    OpenUrlCrossRefPubMed
    1. Larkin S.,
    2. Farrance I. K. G.,
    3. Ordahl C. P.
    (1996) Flanking sequences modulate the cell specificity of M-CAT elements. Mol. Cell. Biol 16, 3742–3755
    OpenUrlAbstract/FREE Full Text
    1. Lee J. J.,
    2. Calzone F. J.,
    3. Britten R. J.,
    4. Angerer R. C.,
    5. Davidson E. H.
    (1986) Activation of sea urchin actin genes during embryogenesis. Measurement of transcript accumulation from five different genes in Strongylocentrotus purpuratus. J. Mol. Biol 188, 173–183
    OpenUrlCrossRefPubMed
    1. Leiden J. M.
    (1993) Transcriptional regulation of T-cell receptor genes. Annu. Rev. Immunol 11, 539–570
    OpenUrlCrossRefPubMedWeb of Science
    1. Liaw G.-J.,
    2. Rudolph K. M.,
    3. Huang J.-D.,
    4. Dubnicoff T.,
    5. Courey A. J.,
    6. Lengyel J. A.
    (1995) The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev 9, 3163–3176
    OpenUrlAbstract/FREE Full Text
    1. Lilly B.,
    2. Galewsky S.,
    3. Firulli A. B.,
    4. Schultz R. A.,
    5. Olson E. N.
    (1994) D-MEF2: A MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc. Natl. Acad. Sci. USA 91, 5662–5666
    OpenUrlAbstract/FREE Full Text
    1. MacLellan W. R.,
    2. Lee T.-C.,
    3. Schwartz R. J.,
    4. Schneider M. D.
    (1994) Transforming growth factor-response elements of the skeletal -actin gene. J. Biol. Chem 269, 16754–16760
    OpenUrlAbstract/FREE Full Text
    1. Maggert K.,
    2. Levine M.,
    3. Frasch M.
    (1995) The somatic-visceral subdivision of the embryonic mesoderm is initiated by dorsal gradient thresholds in Drosophila. Development 121, 2107–2116
    OpenUrlAbstract
    1. Makabe K. W.,
    2. Kirchhamer C. V.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1995) Cis -regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo. Development 121, 1957–1970
    OpenUrlAbstract
    1. Mar J. H.,
    2. Ordahl C. P.
    (1988) A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter. Proc. Natl. Acad. Sci. USA 85, 6404–6408
    OpenUrlAbstract/FREE Full Text
    1. Martin C. H.,
    2. Mayeda C. A.,
    3. Davis C. A.,
    4. Ericsson E. L.,
    5. Knafels J. D.,
    6. Mathog D. R.,
    7. Celniker S. E.,
    8. Lewis E. B.,
    9. Palazzolo M. J.
    (1995) Complete sequence of the bithorax complex of Drosophila. Proc. Natl. Acad. Sci. USA 92, 8398–8402
    OpenUrlAbstract/FREE Full Text
    1. McClay D. R.,
    2. Logan C. Y.
    (1996) Regulative capacity of the archenteron during gastrulation in the sea urchin. Development 122, 607–616
    OpenUrlAbstract
    1. McGinnis W.,
    2. Krumlauf R.
    (1992) Homeobox genes and axial patterning. Cell 68, 283–302
    OpenUrlCrossRefPubMedWeb of Science
    1. McGrew M. J.,
    2. Bogdanova N.,
    3. Hasegawa K.,
    4. Hughes S. H.,
    5. Kitsis R. N.,
    6. Rosenthal N.
    (1996) Distinct gene expression patterns in skeletal and cardiac muscle are dependent on common regulatory sequences in the MLC1/3 locus. Mol. Cell. Biol 16, 4524–4534
    OpenUrlAbstract/FREE Full Text
    1. Molnár A.,
    2. Georgopoulos K.
    (1994) The Ikaros gene encoses a family of functionally diverse zinc finger DNA-binding proteins. Mol. Cell. Biol 14, 82992–8303
    OpenUrl
    1. Morrison A.,
    2. Moroni M. C.,
    3. Ariza-McNaughton L.,
    4. Krumlauf R.,
    5. Mavilio F.
    (1996) In vitro and transgenic analysis of a human HOX4 retinoid-responsive enhancer. Development 122, 1895–1907
    OpenUrlAbstract
    1. Moss J. B.,
    2. McQuinn T. C.,
    3. Schwartz R. J.
    (1994) The avian cardiac-actin promoter is regulated through a pair of complex elements composed of E boxes and serum response elements that bind both positive-and negative-activing factors. J. Biol. Chem 269, 12731–12740
    OpenUrlAbstract/FREE Full Text
    1. Mueller P. R.,
    2. Wold B.
    (1989) In vivo footprinting of a muscle-specific enhancer by ligation-mediated PCR. Science 246, 780–786
    OpenUrlAbstract/FREE Full Text
    1. Muller J.,
    2. Bienz M.
    (1992) Sharp anterior boundary of homeotic gene expression conferred by the fushi tarazu protein. EMBO J 11, 3653–3661
    OpenUrlPubMedWeb of Science
    1. Nemer M.,
    2. Stuebing E. W.,
    3. Bai G.,
    4. Parker H. R.
    (1995) Spatial regulation of SpMTA metallothionein gene expression in sea urchin embryos by a regulatory cassette in intron 1. Mech. Dev 50, 131–137
    OpenUrlCrossRefPubMed
    1. Niemeyer C. C.,
    2. Flytzanis C. N.
    (1993) Upstream elements involved in the embryonic regulation of the sea urchin CyIIIb actin gene: temporal and spatial specific interactions at a single cis -acting element. Dev. Biol 156, 293–302
    OpenUrlCrossRefPubMed
    1. Pascal E.,
    2. Tjian R.
    (1991) Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev 5, 1646–1656
    OpenUrlAbstract/FREE Full Text
    1. Perkins K. K.,
    2. Dailey G. M.,
    3. Tjian R.
    (1988) In vitro analysis of the Antennapedia P2 promoter: identification of a new Drosophila transcription factor. Genes Dev 2, 1615–1626
    OpenUrlAbstract/FREE Full Text
    1. Philipsen S.,
    2. Talbot D.,
    3. Fraser P.,
    4. Grosveld F.
    (1990) The-globin dominant control region: hypersensitive site 2. EMBO J 9, 2159–2167
    OpenUrlPubMedWeb of Science
    1. Pöpperl H.,
    2. Bienz M.,
    3. Studer M.,
    4. Chan S.-K.,
    5. Aparicio S.,
    6. Brenner S.,
    7. Mann R. S.,
    8. Krumlauf R.
    (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042
    OpenUrlCrossRefPubMedWeb of Science
    1. Pruzina S.,
    2. Hanscombe O.,
    3. Whyatt D.,
    4. Grosveld F.,
    5. Philipsen S.
    (1991) Hypersensitive site 4 of the human-globin locus control region. Nucl. Acids Res 19, 1413–1419
    OpenUrlAbstract/FREE Full Text
    1. Ranganayakulu G.,
    2. Schulz R. A.,
    3. Olson E. N.
    (1996) Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol 176, 143–148
    OpenUrlCrossRefPubMedWeb of Science
    1. Rao M. V.,
    2. Donoghue M. J.,
    3. Merlie J. P.,
    4. Sanes J. R.
    (1996) Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice. Mol. Cell. Biol 16, 3909–3922
    OpenUrlAbstract/FREE Full Text
    1. Rhodes S. J.,
    2. Chen R.,
    3. DiMattia G. E.,
    4. Scully K. M.,
    5. Kalla K. A.,
    6. Lin S.-C.,
    7. Yu V. C.,
    8. Rosenfeld M. G.
    (1993) A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes Dev 7, 913–932
    OpenUrlAbstract/FREE Full Text
    1. Riddihough G.,
    2. Ish-Horowicz D.
    (1991) Individual stripe regulatory elements in the Drosophilahairy promoter respond to maternal, gap, and pair-rule genes. Genes Dev 5, 840–854
    OpenUrlAbstract/FREE Full Text
    1. Rivera-Pomar R.,
    2. Lu X.,
    3. Perrimon N.,
    4. Taubert H.,
    5. Jäckle H.
    (1995) Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376, 253–256
    OpenUrlCrossRefPubMed
    1. Rothenberg E. V.,
    2. Ward S. B.
    (1996) A dynamic assembly of diverse transcription factors integrates activation and cell-type information for interleukin 2 gene regulation. Proc. Natl. Acad. Sci. USA 93, 9358–9365
    OpenUrlAbstract/FREE Full Text
    1. Schoenherr C. J.,
    2. Anderson D. J.
    (1995) Silencing is golden- Negative regulation in the control of neuronal gene transcription. Curr. Opin. Neurobiol 5, 566–571
    OpenUrlCrossRefPubMedWeb of Science
    1. Schoenherr C. J.,
    2. Anderson D. J.
    (1995) The neuron-restrictive silencer factors (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363
    OpenUrlAbstract/FREE Full Text
    1. Shashikant C.S.,
    2. Ruddle F. H.
    (1996) Combinations of closely situated cis -acting elements determine tissue-specific patterns and anterior extent of early Hoxc8 expression. Proc. Natl. Acad. Sci. USA 93, 12364–12369
    OpenUrlAbstract/FREE Full Text
    1. Shashikant C.S.,
    2. Bieberich C.J.,
    3. Belting H.-G.,
    4. Borbely M. A.,
    5. Ruddle F. H.
    (1995) Regulation of Hoxc-8 during mouse embryonic development: Identification and characterization of critical elements involved in early neural tube expression. Development 121, 4339–4347
    OpenUrlAbstract
    1. Shott R. J.,
    2. Lee J. J.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1984) Differential expression of the actin gene family of Strongylocentrotus purpuratus. Dev. Biol 101, 295–306
    OpenUrlCrossRefPubMedWeb of Science
    1. Singson A.,
    2. Leviten M. W.,
    3. Bang A. G.,
    4. Hua X. H.,
    5. Posakony J. W.
    (1994) Direct downstream targets of proneural activators in he imaginal disc include genes involved in lateral inhibitory signaling. Genes Dev 8, 2058–2071
    OpenUrlAbstract/FREE Full Text
    1. Sladek F. M.,
    2. Zhong W.,
    3. Lai E.,
    4. Darnell J. E., Jr
    (1990) Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev 4, 2353–2365
    OpenUrlAbstract/FREE Full Text
    1. Small S.,
    2. Blair A.,
    3. Levine M.
    (1992) Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J 11, 4047–4057
    OpenUrlPubMedWeb of Science
    1. Small S.,
    2. Arnosti D. N.,
    3. Levine M.
    (1993) Spacing ensures autonomous expression of different stripe enhancers in the even-skipped promoter. Development 119, 767–772
    OpenUrlAbstract/FREE Full Text
    1. Small S.,
    2. Blair A.,
    3. Levine M.
    (1996) Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. Dev. Biol 175, 314–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Sornson M. W.,
    2. Wu W.,
    3. Dasen J. S.,
    4. Flynn S. E.,
    5. Norman D. J.,
    6. O'Connell S. M.,
    7. Gukovsky I.,
    8. Carriere,
    9. Ryan A. K.,
    10. Miller A. P.,
    11. Zuo L.,
    12. Gleiberman A. S.,
    13. Andersen B.,
    14. Beamer W. G.,
    15. Rosenfeld M. G.
    (1996) Pituitary lineage determination by the Prophetof Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384, 327–333
    OpenUrlCrossRefPubMed
    1. Staehling-Hampton K.,
    2. Hoffmann F. M.,
    3. Baylies M. K.,
    4. Rushton E.,
    5. Bate M.
    (1994) dpp induces mesodermal gene expression in Drosophila. Nature 372, 783–786
    OpenUrlCrossRefPubMedWeb of Science
    1. Strauss E. C.,
    2. Orkin S. H.
    (1992) In vivo protein-DNA interactions at hypersensitive site 3 of the human-globin locus control region. Proc. Natl. Acad. Sci. USA 89, 5809–5813
    OpenUrlAbstract/FREE Full Text
    1. Studer M.,
    2. Pöpperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Taylor M. V.,
    2. Beatty K. E.,
    3. Hunter H. K.,
    4. Baylies M. K.
    (1995) Drosophila MEF2 is regulated by twist and is expressed in both the primordia and differentiated cells of the embryonic somatic, visceral and heart musculature. Mech. Dev 50, 29–41
    OpenUrlCrossRefPubMedWeb of Science
    1. Theze N.,
    2. Calzone F. J.,
    3. Thiebaud P.,
    4. Hill R. L.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1990) Sequences of the CyIIIa actin gene regulatory domain bound specifically by sea urchin embryo nuclear proteins. Mol. Reprod. Dev 25, 110–122
    OpenUrlCrossRefPubMed
    1. Topol J.,
    2. Dearolf C. R.,
    3. Prakash K.,
    4. Parker C. S.
    (1991) Synthetic oligonucleotides recreate Drosophila fushi tarazu zebra-stripe expression. Genes Dev 5, 855–867
    OpenUrlAbstract/FREE Full Text
    1. Wang D. G.-W.,
    2. Kirchhamer C. V.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1995) SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo. Development 121, 1111–1122
    OpenUrlAbstract
    1. Wei Z.,
    2. Angerer L. M.,
    3. Gagnon M. L.,
    4. Angerer R. C.
    (1995) Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo. Dev. Biol 171, 195–211
    OpenUrlCrossRefPubMedWeb of Science
    1. Wijgerde M.,
    2. Grosveld F.,
    3. Fraser P.
    (1995) Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Wimmer E. A.,
    2. Simpson-Brose M.,
    3. Cohen S. M.,
    4. Desplan C.,
    5. Jäckle H.
    (1995) Trans -and cis -acting requirements for blastodermal expression of the head gap gene buttonhead. Mech. Dev 53, 235–245
    OpenUrlCrossRefPubMedWeb of Science
    1. Wotton D.,
    2. Lake R. A.,
    3. Farr C.J.,
    4. Owen M. J.
    (1995) The high mobility group transcription factor, SOX4, transactivates the human CD2 enhancer. J. Biol. Chem 270, 7515–7522
    OpenUrlAbstract/FREE Full Text
    1. Yeh W.-C.,
    2. Cao Z.,
    3. Classon M.,
    4. McKnight S. L.
    (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9, 168–181
    OpenUrlAbstract/FREE Full Text
    1. Yuh C.-H.,
    2. Davidson E. H.
    (1996) Modular cis -regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Development 122, 1069–1082
    OpenUrlAbstract
    1. Yuh C.-H.,
    2. Ransick A.,
    3. Martinez P.,
    4. Britten R. J.,
    5. Davidson E. H.
    (1994) Complexity and organization of DNA-protein interactions in the 5′-regulatory region of an endoderm-specific marker gene in the sea urchin embryo. Mech. Dev 47, 165–186
    OpenUrlCrossRefPubMedWeb of Science
    1. Yuh C.-H.,
    2. Moore J. G.,
    3. Davidson E. H.
    (1996) Quantitative functional interrelations within the cis -regulatory system of the S. purpuratus Endo16 gene. Development 122, 4045–4056
    OpenUrlAbstract
    1. Zeller R. W.,
    2. Griffith J. D.,
    3. Moore J. G.,
    4. Kirchhamer C. V.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1995) A multimerizing transcription factor of sea urchin embryos capable of looping DNA. Proc. Natl. Acad. Sci. USA 92, 2989–2993
    OpenUrlAbstract/FREE Full Text
    1. Zeller R. W.,
    2. Britten R. J.,
    3. Davidson E. H.
    (1995) Developmental utilization of SpP3A1 and SpP3A2: two proteins which recognize the same DNA target site in several sea urchin gene regulatory regions. Dev. Biol 170, 75–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang C.-C.,
    2. Muller J.,
    3. Hoch M.,
    4. Jäckle H.,
    5. Bienz M.
    (1991) Target sequences for hunchback in a control region conferring Ultrabithora × expression boundaries. Development 113, 1171–1179
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The hardwiring of development: organization and function of genomic regulatory systems
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The hardwiring of development: organization and function of genomic regulatory systems
M.I. Arnone, E.H. Davidson
Development 1997 124: 1851-1864;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The hardwiring of development: organization and function of genomic regulatory systems
M.I. Arnone, E.H. Davidson
Development 1997 124: 1851-1864;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992