Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos
E.D. Schmidt, F. Guzzo, M.A. Toonen, S.C. de Vries
Development 1997 124: 2049-2062;
E.D. Schmidt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Guzzo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Toonen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.C. de Vries
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The first somatic single cells of carrot hypocotyl explants having the competence to form embryos in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D) were identified using semi-automatic cell tracking. These competent cells are present as a small subpopulation of enlarged and vacuolated cells derived from cytoplasm-rich and rapidly proliferating non-embryogenic cells that originate from the provascular elements of the hypocotyl. A search for marker genes to monitor the transition of somatic into competent and embryogenic cells in established suspension cell cultures resulted in the identification of a gene transiently expressed in a small subpopulation of the same enlarged single cells that are formed during the initiation of the embryogenic cultures from hypocotyl explants. The predicted amino acid sequence and in vitro kinase assays show that this gene encodes a leucine-rich repeat containing receptor-like kinase protein, designated Somatic Embryogenesis Receptor-like Kinase (SERK). Somatic embryos formed from cells expressing a SERK promoter-luciferase reporter gene. During somatic embryogenesis, SERK expression ceased after the globular stage. In plants, SERK mRNA could only be detected transiently in the zygotic embryo up to the early globular stage but not in unpollinated flowers nor in any other plant tissue. These results suggest that somatic cells competent to form embryos and early globular somatic embryos share a highly specific signal transduction chain with the zygotic embryo from shortly after fertilization to the early globular embryo.

REFERENCES

    1. Aleith F.,
    2. Richter G.
    (1990) Gene expression during induction of somatic embryogenesis in carrot cell suspensions. Planta 183, 17–24
    OpenUrl
    1. Chang C.,
    2. Schaller G. E.,
    3. Patterson S. E.,
    4. Kwok S. F.,
    5. Meyerowitz E. M.,
    6. Bleecker A. B.
    (1992) The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Cell 4, 1263–1271
    OpenUrl
    1. Castle L. A.,
    2. Meine D. W.
    (1994) A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6, 25–41
    OpenUrlAbstract/FREE Full Text
    1. Carpita N. C.,
    2. Gibeaut D. M.
    (1993) Structural models of primary cell walls in flowering plants-consistency of molecular structure with the physical properties of the walls during growth. Plant J 3, 1–30
    OpenUrlCrossRefPubMedWeb of Science
    1. Dangl J. L.
    (1995) Piece de Resistance: novel classes of plant disease resistance genes. Cell 80, 363–366
    OpenUrlCrossRefPubMedWeb of Science
    1. De Jong A. J.,
    2. Schmidt E. D. L.,
    3. De Vries S. C.
    (1993) Early events in higher plant embryogenesis. Plant. Mol. Biol 5, 367–377
    1. De Vries S. C.,
    2. Booij H.,
    3. Meyerink P.,
    4. Huisman G.,
    5. Wilde H. D.,
    6. Thomas T. L.,
    7. Van Kammen A.
    (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176, 196–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Dos Santos A. V. P.,
    2. Cutter E. G.,
    3. Davey M. R.
    (1983) Origin and development of somatic embryos in Medicago sativa L. (Alfalfa). Protoplasma 117, 107–115
    OpenUrlCrossRefWeb of Science
    1. Dubois T.,
    2. Guedira M.,
    3. Dubois D.,
    4. Vasseur J.
    (1991) Direct somatic embryogenesis in leaves of Cichorum—A histological and SEM study of early stages. Protoplasma 162, 120–127
    OpenUrlCrossRefWeb of Science
    1. Filippini F.,
    2. Terzi M.,
    3. Cozzani F.,
    4. Vallone D.,
    5. Lo Schiavo F.
    (1992) Modulation of auxin-binding proteins in cell-suspension: II. Isolation and initial characterization of carrot cell variants impaired in somatic embryogenesis. Theor. Applied Genetics 84, 430–434
    OpenUrl
    1. Gamborg O. L.,
    2. Miller R. A.,
    3. Ojima K.
    (1968) Plant cell cultures: I. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res 50, 151–158
    OpenUrlCrossRefPubMedWeb of Science
    1. Giorgetti L.,
    2. Vergara M. R.,
    3. Evangelista M.,
    4. LoSchiavo F.,
    5. Terzi M.,
    6. Ronchi V. N.
    (1995) On the occurrence of somatic meiosis in embryogenic carrot cell cultures. Mol. Gen. Genet 246, 657–662
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldberg R. B.,
    2. Barker S. J.,
    3. Perez-Grau L.
    (1989) Regulation of gene expression during plant embryogenesis. Cell 56, 149–160
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldberg R. B.,
    2. de Paiva G.,
    3. Yadegari R.
    (1994) Plant embryogenesis: zygote to seed. Science 266, 605–614
    OpenUrlAbstract/FREE Full Text
    1. Govind S.,
    2. Steward R.
    (1991) Dorsoventral pattern formation in Drosophila. Trends Genet 7, 119–125
    OpenUrlPubMedWeb of Science
    1. Guzzo F.,
    2. Baldan B.,
    3. Levi M.,
    4. Sparvoli E.,
    5. LoSchiavo F.,
    6. Terzi M.,
    7. Mariani P.
    (1995) Early cellular events during induction of carrot explants with 2,4-D. Protoplasma 185, 28–36
    OpenUrlCrossRefWeb of Science
    1. Hanks S. K.,
    2. Quinn A. M.,
    3. Hunter T.
    (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52
    OpenUrlAbstract/FREE Full Text
    1. Hashimoto C.,
    2. Hudson K. L.,
    3. Anderson K. V.
    (1988) The Toll gene of Drosophila, required for dorsal-ventral embryogenic polarity, appears to encode a transmembrane protein. Cell 52, 269–279
    OpenUrlCrossRefPubMedWeb of Science
    1. Heck G. R.,
    2. Perry S. E.,
    3. Nichols K. W.,
    4. Fernandez D. E.
    (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7, 1271–1282
    OpenUrlAbstract/FREE Full Text
    1. Hodge R.,
    2. Paul Wyatt,
    3. Draper J.,
    4. Scott R.
    (1992) Cold-plaque screening: a simple technique for the isolation of low abundance, differentially expressed transcripts of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J 2, 257–260
    OpenUrlCrossRef
    1. Horn M. A.,
    2. Walker J. C.
    (1994) Biochemical properties of the autophosphorylaton of RLK5, a receptor-like protein kinase from Arabidopsis thaliana. Biochim. Biophys. Acta 1208, 65–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Jones D. A.,
    2. Thomas C. M.,
    3. Hammond-Kosack K. E.,
    4. Balint-Kurti P. J.,
    5. Jones J. D. G.
    (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266, 789–792
    OpenUrlAbstract/FREE Full Text
    1. Kobe B.,
    2. Deisenhofer J.
    (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem 19, 415–421
    OpenUrlCrossRefPubMedWeb of Science
    1. Koltunow A. M.
    (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5, 1425–1437
    OpenUrlFREE Full Text
    1. Konar R. N.,
    2. Thomas E.,
    3. Street H. E.
    (1972) Origin and structure of embryoids arising from epidermal cells of the stem of Ranunculus sceleratus L. J. Cell Sci 11, 77–93
    OpenUrlAbstract/FREE Full Text
    1. Lackie S.,
    2. Yeung E. C.
    (1996) Zygotic embryo development in Daucus carota. Can. J. Bot 74, 990–998
    OpenUrl
    1. Li F.,
    2. Barnathan E. S.,
    3. Kariko K.
    (1994) Rapid method for screening and cloning cDNAs generated in differential mRNA display: application of Northern blot for affinity capturing of cDNAs. Nucl. Acid Res 22, 1764–1765
    OpenUrlFREE Full Text
    1. Liang P.,
    2. Pardee A. B.
    (1992) Differential display of eucaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971
    OpenUrlAbstract/FREE Full Text
    1. Long J. A.,
    2. Moan E. I.,
    3. Medford J. I.,
    4. Barton M. K.
    (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69
    OpenUrlCrossRefPubMedWeb of Science
    1. Lukowitz W.,
    2. Mayer U.,
    3. Jurgens G.
    (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61–71
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansfield S. G.,
    2. Briarty L. G.
    (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot 69, 461–476
    OpenUrlCrossRefWeb of Science
    1. McGurl B.,
    2. Pearce G.,
    3. Orozco-Cardenas M.,
    4. Ryan C. A.
    (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 257, 1570–1573
    OpenUrlFREE Full Text
    1. Mu J.-H.,
    2. Lee H.-S.,
    3. Kao T.-H.
    (1994) Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell 6, 709–721
    OpenUrlAbstract/FREE Full Text
    1. Pennell R. I.,
    2. Janniche L.,
    3. Scofield G. N.,
    4. Booy H.,
    5. De Vries S. C.,
    6. Roberts K.
    (1992) Identification of a transitional cell state in the developmental pathway to carrot somatic embryogenesis. J. Cell Biol 119, 1371–1380
    OpenUrlAbstract/FREE Full Text
    1. Rounsley S. D.,
    2. Ditta G. S.,
    3. Yanofsky M. F.
    (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259–1269
    OpenUrlAbstract/FREE Full Text
    1. Schmidt E. D. L.,
    2. De Jong A. J.,
    3. De Vries S. C.
    (1994) Signal molecules involved in plant embryogenesis. Plant Mol. Biol 26, 1305–1313
    OpenUrlCrossRefPubMed
    1. Schneider T.,
    2. Dinkins R.,
    3. Robinson K.,
    4. Shellhammer J.,
    5. Meinke D. W.
    (1989) An embryo-lethal mutant of Arabidopsis thaliana is a biotin auxotroph. Dev. Biol 131, 161–167
    OpenUrlPubMedWeb of Science
    1. Scott R.,
    2. Dagless E.,
    3. Hodge R.,
    4. Soufleri I.,
    5. Draper J.
    (1991) Patterns of gene exression in developing anthers of Brassica napus. Plant Mol. Biol 17, 195–207
    OpenUrlCrossRefPubMedWeb of Science
    1. Shelton C. A.,
    2. Wasserman S. A.
    (1993) Pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72, 515–525
    OpenUrlCrossRefPubMedWeb of Science
    1. Shevell D. E.,
    2. Leu W.-M.,
    3. Gilimor C. S.,
    4. Xia G.,
    5. Feldmann K. A.,
    6. Chua N.-H.
    (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77, 1051–1062
    OpenUrlCrossRefPubMedWeb of Science
    1. Springer P. S.,
    2. Richard W.,
    3. McCombie W. M.,
    4. Sundaresan V.,
    5. Martienssen R. A.
    (1995) Gene trap tagging of Prolifera, an essential MCM-2-3-5-like gene in Arabidopsis. Science 268, 877–880
    OpenUrlAbstract/FREE Full Text
    1. Sterk P.,
    2. Booij H.,
    3. Schellekens G. A.,
    4. Van Kammen A.,
    5. De Vries S. C.
    (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3, 907–921
    OpenUrlAbstract/FREE Full Text
    1. Taylor R. L.
    (1967) The foliar embryos of Malaxis paludosa. Can. J. Bot 45, 1553–1556
    OpenUrl
    1. Thomas T. L.
    (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5, 1401–1410
    OpenUrlFREE Full Text
    1. Toonen M. A. J.,
    2. Hendriks T.,
    3. Schmidt E. D. L.,
    4. Verhoeven H. A.,
    5. Van Kammen A.,
    6. De Vries S. C.
    (1994) Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 194, 565–572
    OpenUrlCrossRefWeb of Science
    1. Toonen M. A. J.,
    2. Schmidt E. D. L.,
    3. Hendriks T.,
    4. Verhoeven H. A.,
    5. Van Kammen A.,
    6. De Vries S. C.
    (1996) Expression of the JIM8 cell wall epitope in carrot somatic embryogenesis. Planta 200, 167–173
    OpenUrl
    1. Torii K. U.,
    2. Mitsukawa N.,
    3. Oosumi T.,
    4. Matsuura Y.,
    5. Yokoyama R.,
    6. Whittier R. F.,
    7. Komeda Y.
    (1996) The ArabidopsisERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735–746
    OpenUrlAbstract/FREE Full Text
    1. Van Den Berg C.,
    2. Willemsen V.,
    3. Hage W.,
    4. Weisbeek P.,
    5. Scheres B.
    (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65
    OpenUrlCrossRefPubMedWeb of Science
    1. Van de Sande K.,
    2. Pawlowski K.,
    3. Czaja I.,
    4. Wieneke K.,
    5. Schell J.,
    6. Schmidt J.,
    7. Walden R.,
    8. Matvienko M.,
    9. Wellink J.,
    10. Van Kammen A.,
    11. Franssen H.,
    12. Bisseling T.
    (1996) Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273, 370–373
    OpenUrlAbstract
    1. Van Engelen F. A.,
    2. De Vries S. C.
    (1992) Extracellular proteins in plant embryogenesis. Trends Genet 8, 66–70
    OpenUrlCrossRefPubMedWeb of Science
    1. Varner J. E.,
    2. Lin L.-S.
    (1989) Plant cell wall architecture. Cell 56, 231–239
    OpenUrlCrossRefPubMedWeb of Science
    1. Walker J. C.
    (1993) Receptor-like protein kinase genes of Arabidopsis thaliana. Plant J 3, 451–456
    OpenUrlCrossRefPubMedWeb of Science
    1. Walker J. C.
    (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol. Biol 26, 1599–1609
    OpenUrlCrossRefPubMedWeb of Science
    1. Wernicke W.,
    2. Brettel R.
    (1980) Somatic embryogenesis from Sorgum bicolor leaves. Science 287, 138–139
    OpenUrlAbstract/FREE Full Text
    1. Wilde H. T.,
    2. Nelson W. S.,
    3. Booij H.,
    4. De Vries S. C.,
    5. Thomas T. L.
    (1988) Gene expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176, 205–213
    OpenUrlCrossRef
    1. Wurtele E. S.,
    2. Wang H.,
    3. Durgerian S.,
    4. Nikolau B. J.,
    5. Ulrich T. H.
    (1993) Characterization of a gene that is expressed early in somatic embryogenesis of Daucus carota. Plant Physiol 102, 303–312
    OpenUrlAbstract/FREE Full Text
    1. Zhao Y.,
    2. Feng X. H.,
    3. Watson J. C.,
    4. Bottino P. J.,
    5. Kung S. D.
    (1994) Molecular cloning and biochemical characterization of a receptor-like serine / threonine kinase from rice. Plant Mol. Biol 26, 791–803
    OpenUrlCrossRefPubMed
    1. Zimmerman J. L.
    (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5, 1411–1423
    OpenUrlFREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos
E.D. Schmidt, F. Guzzo, M.A. Toonen, S.C. de Vries
Development 1997 124: 2049-2062;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos
E.D. Schmidt, F. Guzzo, M.A. Toonen, S.C. de Vries
Development 1997 124: 2049-2062;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992