Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Fashioning the vertebrate heart: earliest embryonic decisions
M.C. Fishman, K.R. Chien
Development 1997 124: 2099-2117;
M.C. Fishman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.R. Chien
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Our goal here is to set out the types of unitary decisions made by heart progenitor cells, from their appearance in the heart field until they form the simple heart tube. This provides a context to evaluate cell fate, lineage and, finally, morphogenetic decisions that configure global heart form and function. Some paradigms for cellular differentiation and for pattern generation may be borrowed from invertebrates, but neither Drosophila nor Caenorhabditis elegans suffice to unravel higher order decisions. Genetic analyses in mouse and zebrafish may provide one entrance to these pathways.

REFERENCES

    1. Akhurst R. J.,
    2. Lehnert S. A.,
    3. Faissner A.,
    4. Duffie E.
    (1990) TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development 108, 645–656
    OpenUrlAbstract/FREE Full Text
    1. Andries L. J.
    (1995) Morphoregulatory interactions of endocardial endothelium and extracellular material in the heart. Herz 20, 135–145
    OpenUrlPubMedWeb of Science
    1. Azpiazu N.,
    2. Frasch M.
    (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7, 1325–1340
    OpenUrlAbstract/FREE Full Text
    1. Bisaha J. G.,
    2. Bader D.
    (1991) Identification and characterization of a ventricular-specific avian myosin heavy chain, VMHC1: Expression in differentiating cardiac and skeletal muscle. Dev. Biol 148, 355–364
    OpenUrlCrossRefPubMedWeb of Science
    1. Bitgood M. J.,
    2. McMahon A. P.
    (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol 172, 126–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Bodmer R.
    (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118, 719–729
    OpenUrlAbstract
    1. Bolker J. A.,
    2. Raff R. A.
    (1996) Developmental genetics and traditional homology. BioEssays 18, 489–494
    OpenUrlCrossRefPubMedWeb of Science
    1. Brannan C. I.,
    2. Perkins A. S.,
    3. Vogel K. S.,
    4. Ratner N.,
    5. Nordlund M. L.,
    6. Reid S. W.,
    7. Buchberg A. M.,
    8. Jenkins N. A.,
    9. Parada L. F.,
    10. Copeland N. G.
    (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8, 1019–1029
    OpenUrlAbstract/FREE Full Text
    1. Brutsaert D. L.,
    2. Andries L. J.
    (1992) The endocardial endothelium. Amer. J. Physiol 263, 985–.
    OpenUrl
    1. Burggren W. W.,
    2. Pinder A. W.
    (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu. Rev. Physiol 53, 107–135
    OpenUrlCrossRefPubMedWeb of Science
    1. Carpenter C.,
    2. Honkanen A. A.,
    3. Mashimo H.,
    4. Goss K. A.,
    5. Huang P.,
    6. Fishman M. C.
    (1996) Renal abnormalities in mutant mice. Nature 380, 292–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Casey B.,
    2. Devoto M.,
    3. Jones L. L.,
    4. Ballabio A.
    (1993) Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27. 1. Nat. Genet 5, 403–407
    OpenUrlCrossRefPubMedWeb of Science
    1. Chan-Thomas P. S.,
    2. Thompson R. P.,
    3. Rober B.,
    4. Yacoub M. H.,
    5. Barton P. J. R.
    (1993) Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev. Dyn 197, 203–216
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen C. Y.,
    2. Schwartz R. J.
    (1995) Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2. 5. J. Biol. Chem 270, 15628–15633
    OpenUrlAbstract/FREE Full Text
    1. Chen J.-N.,
    2. Fishman M. C.
    (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809–3816
    OpenUrlAbstract
    1. Chen J.-N.,
    2. Haffter P.,
    3. Odenthal J.,
    4. Vogelsang E.,
    5. Brand M.,
    6. van-Eeden F. J. M.,
    7. Furutani-Seiki M.,
    8. Granato M.,
    9. Hammerschmidt M.,
    10. Heisenberg C.-P.,
    11. Jiang Y.-J.,
    12. Kane D. A.,
    13. Kelsh R. N.,
    14. Mullins M. C.,
    15. Nusslein-Volhard C.
    (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302
    OpenUrlAbstract/FREE Full Text
    1. Chen Z.,
    2. Friedrich G. A.,
    3. Soriano P.
    (1994) Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 8, 2293–2301
    OpenUrlAbstract/FREE Full Text
    1. Chien K. R.,
    2. Zhu H.,
    3. Knowlton K. U.,
    4. Miller-Hance W.,
    5. van-Bilsen M.,
    6. O'Brien T. X.,
    7. Evans S. M.
    (1993) Transcriptional regulation during cardiac growth and development. Annu. Rev. Physiol 55, 77–95
    OpenUrlCrossRefPubMedWeb of Science
    1. Chisaka O.,
    2. Capecchi M. R.
    (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox −1. 5. Nature 350, 473–479
    OpenUrlCrossRefPubMed
    1. Cleaver O. B.,
    2. Patterson K. D.,
    3. Krieg P. A.
    (1996) Overexpression of the tinman-related genes XNkx-2. 5 and XNkx-2. 3 in Xenopus embryos results in myocardial hyperplasia. Development 122, 3549–3556
    OpenUrlAbstract
    1. Cohen-Gould L.,
    2. Mikawa T.
    (1996) The fate diversity of mesodermalcells within the heart field during chicken early embryogenesis. Dev. Biol 177, 265–273
    OpenUrlCrossRefPubMed
    1. Collignon J.,
    2. Varlet I.,
    3. Robertson E. J.
    (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158
    OpenUrlCrossRefPubMedWeb of Science
    1. Copenhaver W. M.
    (1926) Experiments on the development of the heart of Amblystoma punctatum. J. Exp. Zool 43, 321–371
    OpenUrlCrossRef
    1. Copenhaver W. M.
    (1939) Some observations on the growth and function of heteroplastic heart grafts. J. Exp. Zool 82, 239–271
    OpenUrlCrossRef
    1. Crossin K. L.,
    2. Hoffman S.
    (1991) Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Dev. Biol 145, 277–286
    OpenUrlCrossRefPubMedWeb of Science
    1. Danos M. C.,
    2. Yost H. J.
    (1995) Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 121, 1467–1474
    OpenUrlAbstract
    1. Danos M. C.,
    2. Yost H. J.
    (1996) Role of notochord in specification of cardiac left-right orientation in zebrafish and Xenopus. Dev. Biol 177, 96–103
    OpenUrlCrossRefPubMedWeb of Science
    1. de Jong F.,
    2. Opthof T. A. A. M. W.,
    3. Janse M. J.,
    4. Charles R.,
    5. Lamers W. H.,
    6. Moorman A. F. M.
    (1992) Persisting zones of slow impulse conduction in developing chicken hearts. Circ. Res 71, 240–250
    OpenUrlAbstract/FREE Full Text
    1. DeHaan R. L.
    (1959) Cardia bifida and the development of pacemaker function in the early chick heart. Dev. Biol 1, 586–602
    OpenUrlCrossRef
    1. DeRuiter M. C.,
    2. Poelmann R. E.,
    3. Vanderplasdevries I.,
    4. Mentink M. M. T.,
    5. Gittenbergerdegroot A. C.
    (1992) The development of the myocardium and endocardium in mouse embryos—Fusion of two heart tubes?. Anat. Embryol 185, 461–473
    OpenUrlCrossRefPubMed
    1. DiFrancesco D.
    (1995) The onset and autonomic regulation of cardiac pacemaker activity: relevance of the f current. Cardiovasc. Res 29, 449–456
    OpenUrlCrossRefPubMedWeb of Science
    1. Donovan M. J.,
    2. Hahn R.,
    3. Tessarollo L.,
    4. Hempstead B. L.
    (1996) Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat. Genet 14, 210–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Driever W.,
    2. Fishman M. C.
    (1996) The zebrafish: heritable disorders in transparent embryos. J. Clin. Invest 97, 1788–1794
    OpenUrlPubMedWeb of Science
    1. Driever W.,
    2. Solnica-Krezel L.,
    3. Schier A. F.,
    4. Neuhauss S. C. F.,
    5. Malicki J.,
    6. Stemple D. L.,
    7. Stainier D. Y. R.,
    8. Zwartkruis F.,
    9. Abdelilah S.,
    10. Rangini Z.,
    11. Belak J.,
    12. Boggs C.
    (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46
    OpenUrlAbstract/FREE Full Text
    1. Dyson E.,
    2. Sucov H.,
    3. Kubalak S. W.,
    4. Schmid-Schonbein G.,
    5. Delano F.,
    6. Evans R. M.,
    7. Ross J., Jr.,
    8. Chien K. R.
    (1995) Atrial-like phenotype is associated with embryonic ventricular failure in RXR/ mice. Proc. Natl. Acad. Sci. USA 92, 7386–7390
    OpenUrlAbstract/FREE Full Text
    1. Edmondson D. G.,
    2. Lyons G. E.,
    3. Martin J. F.,
    4. Olson E. N.
    (1994) Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120, 1251–1263
    OpenUrlAbstract
    1. Eichmann A.,
    2. Marcelle C.,
    3. Breant C.,
    4. Le Douarin N. M.
    (1993) Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech. Dev 42, 33–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Eisenberg L. M.,
    2. Markwald R. R.
    (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res 77, 1–6
    OpenUrlFREE Full Text
    1. Epstein D. J.,
    2. Vekemans M.,
    3. Gros P.
    (1991) splotch (Sp 2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774
    OpenUrlCrossRefPubMedWeb of Science
    1. Evans S. M.,
    2. Tai L. J.,
    3. Tan V. P.,
    4. Newton C. B.,
    5. Chien K. R.
    (1994) Heterokaryons of cardiac myocytes and fibroblasts reveal the lack of dominance of the cardiac muscle phenotype. Molec. Cell. Biol 14, 4269–4279
    OpenUrlAbstract/FREE Full Text
    1. Evans S. M.,
    2. Yan W.,
    3. Murillo M. P.,
    4. Ponce J.,
    5. Papalopulu N.
    (1995) tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2-3, a second vertebrate homologue of tinman. Development 121, 3889–3899
    OpenUrlAbstract
    1. Fishman M. C.,
    2. Stainier D. Y. R.
    (1994) Cardiovascular development: Prospects for a genetic approach. Circ. Res 74, 757–763
    OpenUrlAbstract/FREE Full Text
    1. Flamme I. G. B.,
    2. Risau W.
    (1994) Vascular Endothelial Growth Factor(VEGF) and VEGF Receptor 2 (flk-1) Are Expressed during Vasculogenesis and Vascular Differentation in the Quail Embryo. Dev. Biol 169, 699–712
    1. Franz T.
    (1993) The splotch (Sp1H) and splotch-delayed (Spd) alleles: differential phenotypic effects on neural crest and limb musculature. Anat. Embryol 187, 371–377
    OpenUrlPubMed
    1. Frasch M.
    (1995) Induction of visceral and cardiac mesoderm by ectodermal DPP in the early Drosophila embryo. Nature 374, 464–467
    OpenUrlCrossRefPubMedWeb of Science
    1. Gabor Miklos G. L.,
    2. Rubin G. M.
    (1996) The role of the genome project in determining gene function: Insights from model organisms. Cell 86, 521–529
    OpenUrlCrossRefPubMedWeb of Science
    1. Gannon M.,
    2. Bader D.
    (1995) Initiation of cardiac differentiation occurs in the absence of anterior endoderm. Development 121, 2439–2450
    OpenUrlAbstract
    1. Gans C.,
    2. Northcut R. G.
    (1983) Neural crest and the origin of vertebrates: A new head. Science 220, 268–274
    OpenUrlAbstract/FREE Full Text
    1. Garcia-Martinez V.,
    2. Schoenwolf G. C.
    (1993) Primitive-streak origin of the cardiovascular system in avian embryos. Dev. Biol 159, 706–719
    OpenUrlCrossRefPubMedWeb of Science
    1. Gassmann M.,
    2. Casagranda F.,
    3. Orioli D.,
    4. Simon H.,
    5. Lai C.,
    6. Klein R.,
    7. Lemke G.
    (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394
    OpenUrlCrossRefPubMedWeb of Science
    1. George E. L.,
    2. Georges-Labouesse E. N.,
    3. Patel-King R. S.,
    4. Rayburn H.,
    5. Hynes R. O.
    (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091
    OpenUrlAbstract
    1. Gossen M.,
    2. Freundlieb S.,
    3. Bender G.,
    4. Muller G.,
    5. Hillen W.,
    6. Bujard H.
    (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769
    OpenUrlAbstract/FREE Full Text
    1. Gourdie R. G.,
    2. Mima T.,
    3. Thompson R. P.,
    4. Mikawa T.
    (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121, 1423–1431
    OpenUrlAbstract
    1. Graff J. M.,
    2. Thies R. S.,
    3. Song J. J.,
    4. Celeste A. J.,
    5. Melton D. A.
    (1994) Studies with a xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179
    OpenUrlCrossRefPubMedWeb of Science
    1. Granato M.,
    2. Nusslein-Volhard C.
    (1996) Fishing for genes controlling development. Curr. Opin. Genet. Dev 6, 461–468
    OpenUrlCrossRefPubMedWeb of Science
    1. Gruber P. J.,
    2. Kubalak S. W.,
    3. Pexieder T.,
    4. Sucov H. M.,
    5. Evans R. M.,
    6. Chien K. R.
    (1996) RXRdeficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J. Clin. Invest 98, 1332–1343
    OpenUrlCrossRefPubMedWeb of Science
    1. Haffter P.,
    2. Granato M.,
    3. Brand M.,
    4. Mullins M. C.,
    5. Hammerschmidt M.,
    6. Kane D. A.,
    7. Odenthal J.,
    8. van-Eeden F. J. M.,
    9. Jiang Y.-J.,
    10. Heisenberg C.-P.,
    11. Kelsh R. N.,
    12. Furutani-Seiki M.,
    13. Warga R. M.,
    14. Vogelsang E.,
    15. Beuchle D.,
    16. Schach U.,
    17. Fabian C.,
    18. Nusslein-Volhard C.
    (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36
    OpenUrlAbstract/FREE Full Text
    1. Harvey R. P.
    (1996) Review: NK-2 homeobox genes and heart development. Dev. Biol 178, 203–216
    OpenUrlCrossRefPubMedWeb of Science
    1. Holt J. P.,
    2. Rhode E. A.,
    3. Kines H.
    (1968) Ventricular volumes and body weight in mammals. Am. J. Physiol 215, 704–715
    OpenUrl
    1. Huang P. L.,
    2. Huang Z.,
    3. Mashimo H.,
    4. Bloch K. D.,
    5. Moskowitz M. A.,
    6. Bevan J. A.,
    7. Fishman M. C.
    (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Hummel K. P.,
    2. Chapman D. B.
    (1959) Visceral inversion and associated anomalies in the mouse. J. Hered 50, 9–13
    OpenUrlFREE Full Text
    1. Humphrey R. R.
    (1972) Genetic and experimental studies on a mutant gene (c) determining absence of heart action in embryos of the mexican axolotl (Ambystoma mexicanum). Dev. Biol 27, 365–375
    OpenUrlCrossRefPubMedWeb of Science
    1. Hyatt B. A.,
    2. Lohr J. L.,
    3. Yost H. J.
    (1996) Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384, 62–65
    OpenUrlCrossRefPubMedWeb of Science
    1. Iannello R. C.,
    2. Mar J. H.,
    3. Ordahl C. P.
    (1991) Characterization of a promoter element required for transcription in myocardial cells. J. Biol. Chem 266, 3309–3316
    OpenUrlAbstract/FREE Full Text
    1. Icardo J. M.,
    2. Fernandez-Teran A.
    (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta anat 130, 264–274
    OpenUrlPubMedWeb of Science
    1. Icardo J. M.,
    2. Ojeda J. L.
    (1984) Effects of colchicine on the formation and looping of the tubular heart of the embryonic chick. Acta Anat 119, 1–9
    OpenUrlPubMed
    1. Inagaki T.,
    2. Garcia-Martinez V.,
    3. Schoenwolf G. C.
    (1993) Regulative ability of the prospective cardiogenic and vasculogenic areas of the primitive streak during avian gastrulation. Dev. Dyn 197, 57–68
    OpenUrlPubMedWeb of Science
    1. Itasaki N.,
    2. Nakamura H.,
    3. Sumida H.,
    4. Yasuda M.
    (1991) Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anat. Embryol 183, 29–39
    OpenUrlPubMed
    1. Jaber M.,
    2. Koch W. J.,
    3. Rockman H. A.,
    4. Smith B.,
    5. Bond R. A.,
    6. Sulik K.,
    7. Ross J., Jr.,
    8. Lefkowitz R. J.,
    9. Caron M. G.,
    10. Giros B.
    (1996) Essential role of-adrenergic receptor kinase in cardiac development and function. Proc. Natl. Acad. Sci. USA 93, 12974–12979
    OpenUrlAbstract/FREE Full Text
    1. Jacks T.,
    2. Shih T. S.,
    3. Schmitt E. M.,
    4. Bronson R. T.,
    5. Bernards A.,
    6. Weimberg R. A.
    (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nfl. Nat. Genet 7, 353–361
    OpenUrlCrossRefPubMedWeb of Science
    1. Jacobson A. G.
    (1960) Influences of ectoderm and endoderm on heart differentiation in the newt. Dev. Biol 2, 138–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Jacobson A. G.
    (1961) Heart determination in the newt. J exp. Zool 146, 139–151
    OpenUrlCrossRefPubMedWeb of Science
    1. Jacobson A. G.,
    2. Sater A. K.
    (1988) Features of embryonic induction. Development 104, 341–359
    OpenUrlAbstract/FREE Full Text
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Hogan B. L. M.
    (1991) Involvement of bone morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111, 531–542
    OpenUrlAbstract
    1. Jones W. K.,
    2. Grupp I. L.,
    3. Doetschman T.,
    4. Grupp G.,
    5. Osinska H.,
    6. Hewett T. E.,
    7. Boivin G.
    (1996) Ablation of the murine a myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J. Clin. Invest 98, 1906–1917
    OpenUrlCrossRefPubMedWeb of Science
    1. Kastner P.,
    2. Grondona J. M.,
    3. Mark M.,
    4. Gansmuller A.,
    5. LeMeur M.,
    6. Decimo D.,
    7. Vonesch J. L.,
    8. Dolle P.,
    9. Chambon P.
    (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78, 987–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaufman M. H.,
    2. Navaratnam V.
    (1981) Early differentiation of the heart in mouse embryos. J. Anat 133, 235–246
    OpenUrlPubMedWeb of Science
    1. Kelly R.,
    2. Alonso S.,
    3. Tajbakhsh S.,
    4. Cossu G.,
    5. Buckingham M.
    (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol 128, 383–396
    OpenUrlAbstract/FREE Full Text
    1. Kirby M. L.,
    2. Waldo K. L.
    (1990) Role of neural crest in congenital heart disease. Circulation 82, 332–340
    OpenUrlFREE Full Text
    1. Kirby M. L.,
    2. Waldo K. L.
    (1995) Neural crest and cardiovascular patterning. Circulation Research 77, 211–215
    OpenUrlFREE Full Text
    1. Komuro I.,
    2. Izumo S.
    (1993) Csx: A murine homeobox-containing gene specifically expressed in the developing heart. Proc. Natl. Acad. Sci. USA 90, 8145–8149
    OpenUrlAbstract/FREE Full Text
    1. Krege J. H.,
    2. John S. W. M.,
    3. Langenbach L. L.,
    4. Hodgin J. B.,
    5. Hagaman J. R.,
    6. Bachman E. S.,
    7. Jennette J. C.,
    8. O'Brien D. A.,
    9. Smithies O.
    (1995) Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 375, 146–148
    OpenUrlCrossRefPubMedWeb of Science
    1. Kreidberg J. A.,
    2. Sariola H.,
    3. Loring J. M.,
    4. Maeda M.,
    5. Pelletier J.,
    6. Housman D.,
    7. Jaenisch R.
    (1993) WT-1 is required for early kidney development. Cell 74, 679–691
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuhn R.,
    2. Schwenk F.,
    3. Aguet M.,
    4. Rajewsky K.
    (1995) Inducible gene targeting in mice. Science 269, 1427–1429
    OpenUrlAbstract/FREE Full Text
    1. Kurihara Y.,
    2. Kurihara H.,
    3. Oda H.,
    4. Maemura K.,
    5. Nagai R.,
    6. Ishikawa T.,
    7. Yazaki Y.
    (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J. Clin. Invest 96, 293–503
    1. Kwee L.,
    2. Baldwin H. S.,
    3. Shen H. M.,
    4. Stewart C. L.,
    5. Buck C.,
    6. Buck C. A.,
    7. Labow M. A.
    (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121, 489–503
    OpenUrlAbstract
    1. Lamers W. H.,
    2. De Jong F.,
    3. De Groot I. J. M.,
    4. Moorman A. F. M.
    (1991) The development of the avian conduction system, a review. Eur. J. Morph 29, 233–253
    OpenUrlPubMed
    1. Lawrence P. A.,
    2. Morata G.
    (1976) Compartments in the wing of Drosophila: A study of the engrailed gene. Dev. Biol 50, 321–337
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee K.,
    2. Simon H.,
    3. Chen H.,
    4. Bates B.,
    5. Hung M.,
    6. Hauser C.
    (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee R. R. K.,
    2. Stainier D. Y. R.,
    3. Weinstein B. M.,
    4. Fishman M. C.
    (1994) Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120, 3361–3366
    OpenUrlAbstract
    1. Lembo G.,
    2. Rockman H. A.,
    3. Hunter J. J.,
    4. Warburton C.,
    5. Koch W. J.,
    6. Ma L.,
    7. Printz M. P.,
    8. Ross J., Jr.,
    9. Chien K. R.,
    10. Powell-Braxton L.
    (1996) Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J. Clin. Invest 98, 2648–2655
    OpenUrlCrossRefPubMedWeb of Science
    1. Levin M.,
    2. Johnson R. L.,
    3. Stern C. D.,
    4. Kuehn M.,
    5. Tabin C.
    (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814
    OpenUrlCrossRefPubMedWeb of Science
    1. Lilly B.,
    2. Zhao B.,
    3. Ranganayakulu G.,
    4. Paterson B. M.,
    5. Schulz R. A.,
    6. Olson E.
    (1995) Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267, 688–693
    OpenUrlAbstract/FREE Full Text
    1. Linask K. K.
    (1992) N-cadherin localization in early heart development and polar expression of Na+, K+-ATPase, and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev. Biol 151, 213–224
    OpenUrlCrossRefPubMedWeb of Science
    1. Linask K. K.,
    2. Lash J. W.
    (1988) A role for fibronectin in the migration of avian precardiac cells II. Rotation of the heart-forming region during different stages and its effects. Dev. Biol 129, 324–329
    OpenUrlCrossRefPubMedWeb of Science
    1. Linask K. K.,
    2. Lash J. W.
    (1993) Early heart development: Dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev. Dyn 195, 62–69
    OpenUrl
    1. Lints T. J.,
    2. Parsons L. M.,
    3. Hartley L.,
    4. Lyons I.,
    5. Harvey R. P.
    (1993) Nkx-2. 5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 419–431
    OpenUrlAbstract
    1. Lyons I.,
    2. Parsons L. M.,
    3. Hartley L.,
    4. Li R.,
    5. Andrews J. E.,
    6. Robb L.,
    7. Harvey R. P.
    (1995) Myogenic and morphogenesis defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9, 1654–1666
    OpenUrlAbstract/FREE Full Text
    1. Manasek F. J.
    (1968) Embryonic development of the heart. A light and electron microscopic study of myocardial development in the early chick embryo. J. Morph 125, 329–366
    OpenUrlCrossRefPubMedWeb of Science
    1. Mangold O.
    (1956) Experimente zur Analyse der Herzentwicklung bei Triton. Naturwiss 44, 287–.
    OpenUrl
    1. Manning A.,
    2. McLachlan J. C.
    (1990) Looping of chick embryo hearts in vitro. J. Anat 168, 257–263
    OpenUrlPubMed
    1. Matzuk M. M.,
    2. Kumar T. R.,
    3. Vassalli A.,
    4. Bickenbach J. R.,
    5. Roop D. R.,
    6. Jaenisch R.,
    7. Bradley A.
    (1995) Functional analysis of activins during mammalian development. Nature 374, 354–356
    OpenUrlCrossRefPubMed
    1. McGrath J.,
    2. Horwich A. L.,
    3. Brueckner M.
    (1992) Duplication/deficiency mapping of situs inversus viscerum (iv), a gene that determines left-right asymmetry in the mouse. Genomics 14, 643–648
    OpenUrlCrossRefPubMed
    1. McGuire P. G.,
    2. Alexander S. M.
    (1993) Inhibition of urokinase synthesis and cell surface binding alters the motile behavior of embryonic endocardial-derived mesenchymal cells in vitro. Development 118, 931–939
    OpenUrlAbstract
    1. Mendelsohn C.,
    2. Lohnes D.,
    3. Decimo D.,
    4. Lufkin T.,
    5. LeMeur M.,
    6. Chambon P.,
    7. Mark M.
    (1994) Function of the retinoic acid receptors (RARs) during development. (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771
    OpenUrlAbstract
    1. Metzger D.,
    2. Clifford J.,
    3. Chiba H.,
    4. Chambon P.
    (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995
    OpenUrlAbstract/FREE Full Text
    1. Meyer D.,
    2. Birchmeier C.
    (1995) Multiple essential functions of neuregulin in development. Nature 378, 386–390
    OpenUrlCrossRefPubMedWeb of Science
    1. Mikawa T.,
    2. Fischman D. A.
    (1992) Retroviral analysis of cardiac morphogenesis: Discontinuous formation of coronary vessels. Proc. Natl. Acad. Sci. USA 89, 9504–9508
    OpenUrlAbstract/FREE Full Text
    1. Mikawa T.,
    2. Gourdie R. G.
    (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol 174, 221–232
    OpenUrlCrossRefPubMedWeb of Science
    1. Minty A.,
    2. Keded L.
    (1986) pstream Regions of the human cardiac actin gene that modulates in transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cel. Biol 6, 2125–2136
    OpenUrlAbstract/FREE Full Text
    1. Mjaatvedt C. H.,
    2. Markwald R. R.
    (1989) Induction of an epithelial-mesenchymal transition by an in Vivo adheron-like complex. Dev. Biol 136, 118–128
    OpenUrlCrossRefPubMedWeb of Science
    1. Moens C. B.,
    2. Stanton B. R.,
    3. Parada L. F.,
    4. Rossant J.
    (1993) Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 119, 485–499
    OpenUrlAbstract
    1. Molkentin J.,
    2. Firulli A.,
    3. Balck B.,
    4. Lyons G.,
    5. Edmondson D.,
    6. Hustad C. M.,
    7. Copeland N.,
    8. Jenkins N.,
    9. Olson E. N.
    (1996) MEF2B is a potent transactivator expressed in early myogenic lineages. Mol. Cel. Biol 16, 3814–3824
    OpenUrlAbstract/FREE Full Text
    1. Morrison-Graham K.,
    2. Schatteman G. C.,
    3. Bork T.,
    4. Bowen-Pope D. F.,
    5. Weston J. A.
    (1992) A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 115, 133–142
    OpenUrlAbstract
    1. Nagasawa T.,
    2. Hirota S.,
    3. Tachibana K.,
    4. Takakura N.,
    5. Nishikawa S.,
    6. Kitamura Y.,
    7. Yoshida N.,
    8. Kikutani H.,
    9. Kishimoto T.
    (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638
    OpenUrlCrossRefPubMedWeb of Science
    1. Nascone N.,
    2. Mercola M.
    (1995) An inductive role for the endoderm in Xenopus cardiogenesis. Development 121, 515–523
    OpenUrlAbstract
    1. Navankasattusas S.,
    2. Sawadogo M.,
    3. van Bilsen M.,
    4. Dang C. V.,
    5. Chien K. R.
    (1994) The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light chain 2 gene via independent cis regulatory elements. Mole. Cell. Biol 14, 7331–7339
    OpenUrlAbstract/FREE Full Text
    1. Navankasattusas S.,
    2. Zhu H.,
    3. Garcia A. V.,
    4. Evans S. M.,
    5. Chien K. R.
    (1992) A ubiquitous factor (HF-1a) and a distinct muscle factor (HS-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression. Mole. Cell. Biol 12, 1469–1479
    OpenUrlAbstract/FREE Full Text
    1. No D.,
    2. Yao T.-P.,
    3. Evans R. M.
    (1996) Ecdysone inducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA, In Press
    1. Noden D. M.
    (1991). Origins and patterning of avian outflow tract endocardium. Development 111, 867–876
    OpenUrlFREE Full Text
    1. Nusslein-Volhard C.
    (1994) Of flies and fishes. Science 266, 572–574
    OpenUrlAbstract/FREE Full Text
    1. Olson E. N.,
    2. Srivastava D.
    (1996) Molecular pathways controlling heart development. Science 272, 671–676
    OpenUrlAbstract/FREE Full Text
    1. Oosthoek P. W.,
    2. Viragh S.,
    3. Lamers W. H.,
    4. Moorman A. F. M.
    (1993) Immunohistochemical delineation of the conduction system. Circ. Res 73, 482–491
    OpenUrlAbstract/FREE Full Text
    1. Payne R. M.,
    2. Johnson M. C.,
    3. Grant J. W.,
    4. Strauss A. W.
    (1995) Toward a molecular understanding of congenital heart disease. Circulation 91, 494–504
    OpenUrlAbstract/FREE Full Text
    1. Pelster B.,
    2. Burggren W. W.
    (1996) Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebrafish (Danio rerio). Circ. Res 79, 358–362
    OpenUrlPubMedWeb of Science
    1. Potts J. D.,
    2. Vincent E. B.,
    3. Runyan R. B.,
    4. Weeks D. L.
    (1992) Sense and antisense TGF3 mRNA levels correlate with cardiac valve induction. Dev. Dyn 193, 340–345
    OpenUrlAbstract/FREE Full Text
    1. Powell-Braxton L.,
    2. Hollingshead P.,
    3. Warburton C.,
    4. Dowd M.,
    5. Pitts-Meek S.,
    6. Salton D.,
    7. Gillett N.,
    8. Steward T. A.
    (1993) IGF-1 is required for normal embryonic growth in mice. Genes Dev 7, 2609–2617
    OpenUrlAbstract/FREE Full Text
    1. Reaume A. G.,
    2. de Sousa P. A.,
    3. Kulkarni S.,
    4. Langille B. L.,
    5. Zhu D.,
    6. Davies T. C.,
    7. Juneja S. C.,
    8. Kidder G. M.,
    9. Rossant J.
    (1995) Cardiac malformation in neonatal mice lacking connexin-43. Science 267, 1831–1834
    OpenUrlAbstract/FREE Full Text
    1. Rezaee M.,
    2. Isokawa K.,
    3. Halligan N.,
    4. Markwald R. R.,
    5. Krug E. L.
    (1993) Identification of an extracellular 130-kDa protein involved in early cardiac morphogenesis. J. Biol. Chemi 268, 14404–14411
    OpenUrlCrossRefPubMedWeb of Science
    1. Rosenquist G. C.
    (1970) Location and movements of cardiogenic cells in the chick embryo: The heart-forming portion of the primitive streak. Dev. Biol 22, 461–475
    OpenUrlAbstract
    1. Ross R. S.,
    2. Navankasattusas S.,
    3. Harvey R. P.,
    4. Chien K. R.
    (1996) An HF-1a/HF-1b/MEF-2 combinatorial element confers cardiac ventricular specificity and establishes an anterior-posterior gradient of expression. Development 122, 1799–1809
    OpenUrlCrossRefPubMed
    1. Sater A. K.,
    2. Jacobson A. G.
    (1990) The restriction of the heart morphogenetic field in Xenopus laevis. Dev. Biol 140, 328–336
    OpenUrlAbstract
    1. Sater A. K.,
    2. Jacobson A. G.
    (1990) The role of the dorsal lip in the induction of heart mesoderm in Xenopus laevis. Development 108, 461–470
    OpenUrlCrossRefPubMedWeb of Science
    1. Satin J.,
    2. Fujii S.,
    3. DeHaan R. L.
    (1988) Development of cardiac beat rate in early chick embryos is regulated by regional cues. Dev. Biol 129, 103–113
    OpenUrlCrossRefPubMedWeb of Science
    1. Schatteman G. C.,
    2. Motley S. T.,
    3. Effmann E. L.,
    4. Bowen-Pope D. F.
    (1995) Platelet-derived growth factor receptor alpha subunit deleted Patch mouse exhibits severe cardiovascular dysmorphogenesis. Teratology 51, 351–366
    OpenUrlAbstract
    1. Schilling T. F.,
    2. Kimmell C. B.
    (1994) Segment and cell type lineage restrictions during phyarngeal arch development in the zebrafish embryo. Development 120, 483–494
    OpenUrlAbstract
    1. Schultheiss T. M.,
    2. Xydas S.,
    3. Lassar A. B.
    (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121, 4203–4214
    OpenUrlAbstract/FREE Full Text
    1. Seo J. W.,
    2. Brown N. A.,
    3. Ho S. Y.,
    4. Anderson R. H.
    (1992) Abnormal laterality and congenital cardiac anomalies. Circulation 86, 642–650
    OpenUrlCrossRefPubMed
    1. Sissman N. J.
    (1970) Developmental landmarks in cardiac morphogenesis: comparative chronology. Am. J. Cardiol 25, 141–148
    OpenUrlCrossRefPubMedWeb of Science
    1. Spence S. G.,
    2. Argraves W. S.,
    3. Walters L.,
    4. Hungerford J. E.,
    5. Little C. D.
    (1992) Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo. Dev. Biol 151, 473–484
    OpenUrlAbstract/FREE Full Text
    1. Srivastava D.,
    2. Cserjesi P.,
    3. Olson E. N.
    (1995) New subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999
    OpenUrlCrossRefPubMedWeb of Science
    1. St. Johnston D.,
    2. Nusslein-Volhard C.
    (1992) The origin of pattern and polarity in the drosophila embryo. Cell 68, 201–219
    OpenUrlCrossRefPubMedWeb of Science
    1. Stainier D. Y. R.,
    2. Fishman M. C.
    (1992) Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol 153, 91–101
    OpenUrlAbstract/FREE Full Text
    1. Stainier D. Y. R.,
    2. Fouquet B.,
    3. Chen J.,
    4. Warren K. S.,
    5. Weinstein B. M.,
    6. Meiler S.,
    7. Mohideen M. P. K.,
    8. Neuhauss S. C. F.,
    9. Solnica-Krezel L.,
    10. Schier A. F.,
    11. Zwartkruis F.,
    12. Stemple D. L.,
    13. Malicki J.,
    14. Driever W.,
    15. Fishman M. C.
    (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292
    OpenUrlAbstract
    1. Stainier D. Y. R.,
    2. Lee R. K.,
    3. Fishman M. C.
    (1993) Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation. Development 119, 31–40
    OpenUrlAbstract
    1. Stainier D. Y. R.,
    2. Weinstein B. M.,
    3. Detrich H. W. I.,
    4. Zon L. I.,
    5. Fishman M. C.
    (1995) cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–3150
    OpenUrlCrossRefPubMed
    1. Stalsberg H.
    (1969) Regional mitotic activity in the precardiac mesoderm and differentiating heart tube in the chick embryo. Dev. Biol 20, 18–45
    OpenUrlCrossRefPubMed
    1. Stalsberg H.
    (1970) Mechanism of dextral looping of the embryonic heart. Am. J. Cardiol 25, 265–271
    OpenUrlAbstract/FREE Full Text
    1. Sucov H. M.,
    2. Dyson E.,
    3. Gumeringer C. L.,
    4. Price J.,
    5. Chien K. R.,
    6. Evans R. M.
    (1994) RXRalpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8, 1007–1018
    OpenUrlCrossRefPubMedWeb of Science
    1. Sugi Y.,
    2. Markwald R. R.
    (1996) Formation and early morphogenesis of endocardial endothelial precursor cells and the role of endoderm. Dev. Biol 175, 66–83
    OpenUrlPubMed
    1. Taber L. A.,
    2. Lin I. E.,
    3. Clark E. B.
    (1995) Mechanics of cardiac looping. Developmental Dynamics 203, 42–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Ticho B. S.,
    2. Stainier D. Y. R.,
    3. Fishman M. C.,
    4. Breitbart R. E.
    (1996) Three zebrafish MEF2 genes delineate somitic and cardiac muscle development in wild-type and mutant embryos. Mech. Dev 59, 205–218
    OpenUrlCrossRefPubMedWeb of Science
    1. Tonissen K. F.,
    2. Drysdale T. A.,
    3. Lints T. J.,
    4. Harvey R. P.,
    5. Krieg P. A.
    (1994) XNkx-2. 3, a xenopus gene related to Nkx-2. 5 and tinman: Evidence for a conserved role in cardiac development.Dev. Biol 162, 325–328
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsuda T.,
    2. Philp N.,
    3. Zile J. H.,
    4. Linask K. K.
    (1996) Left-right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev. Biol 173, 39–50
    OpenUrlPubMed
    1. Viragh S.,
    2. Challice C. E.
    (1983) The development of the early atrioventricular conduction system in the embryonic heart. Can. J. Physiol. Pharmacol 61, 775–792
    OpenUrlCrossRefPubMedWeb of Science
    1. Viragh S.,
    2. Szabo E.,
    3. Challice C. E.
    (1989) Formation of the primitive myo-and endocardial tubes in the chicken embryo. J. Molec. Cell. Cardiol 21, 123–137
    OpenUrl
    1. Waddington C. H.
    (1932) Experiments on the development of chick and duck embryos, cultivated in vitro. Phil. Trans. R. Soc. Lond., B 221, 179–230
    OpenUrlCrossRefPubMedWeb of Science
    1. Wunsch A. M.,
    2. Little C. D.,
    3. Markwald R. R.
    (1994) Cardiac endothelial heterogeneity defines vascular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev. Biol 165, 585–601
    OpenUrlAbstract
    1. Yamaguchi T. P.,
    2. Dumont D. J.,
    3. Conlon R. A.,
    4. Breitman M. L.,
    5. Rossant J.
    (1993) flk-1, an flt- related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118, 489–498
    OpenUrlAbstract/FREE Full Text
    1. Yokoyama T.,
    2. Copeland N. G.,
    3. Jenkins N. A.,
    4. Montgomery C. A.,
    5. Elder F. F. B.,
    6. Overbeek P. A.
    (1993) Reversal of left-right asymmetry: A situs inversus mutation. Science 260, 679–682
    OpenUrlCrossRefPubMed
    1. Yost H. J.
    (1992) Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature 357, 158–161
    OpenUrlCrossRefPubMedWeb of Science
    1. Yost H. J.
    (1995) Vertebrate left-right development. Cell 82, 689–692
    OpenUrlFREE Full Text
    1. Yutzey K. E.,
    2. Bader D.
    (1995) Diversification of cardiomyogenic cell lineages during early heart development. Circ. Res 77, 216–219
    OpenUrlAbstract
    1. Yutzey K. E.,
    2. Rhee J. T.,
    3. Bader D.
    (1994) Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120, 871–883
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhou Q. Y.,
    2. Palmiter R. D.
    (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhou Q. Y.,
    2. Quaife C. J.,
    3. Palmiter R. D.
    (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374, 640–643
    OpenUrlAbstract/FREE Full Text
    1. Zhu H.,
    2. Nguyen V. T. B.,
    3. Brown A.,
    4. Pourhosseini A.,
    5. Garcia A. V.,
    6. Van Bilsen M.,
    7. Chien K. R.
    (1993) A novel, tissue restricted zinc finger protein (HR-1b) binds to the cardiac regulatory element (HF-1b/MEF-2) in the rat myosin light chain-2 gene. Mole. Cell. Biol 13, 4432–4444
    OpenUrlAbstract
    1. Zou Y.,
    2. Evans S.,
    3. Chen J.,
    4. Kuo H.-C.,
    5. Harvey R. P.,
    6. Chien K. R.
    (1997) CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124, 793–809
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fashioning the vertebrate heart: earliest embryonic decisions
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Fashioning the vertebrate heart: earliest embryonic decisions
M.C. Fishman, K.R. Chien
Development 1997 124: 2099-2117;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Fashioning the vertebrate heart: earliest embryonic decisions
M.C. Fishman, K.R. Chien
Development 1997 124: 2099-2117;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
  • Drosophila puckered regulates Fos/Jun levels during follicle cell morphogenesis
  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992