Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila
M. McGrail, T.S. Hays
Development 1997 124: 2409-2419;
M. McGrail
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.S. Hays
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle orientation is highly ordered and is thought to impart a polarity to the cyst that is necessary for the subsequent differentiation of the oocyte. Using mutations in the Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, we show that cytoplasmic dynein is required at two stages of oogenesis. Early in oogenesis, dynein mutations disrupt spindle orientation in dividing cysts and block oocyte determination. The localization of dynein in mitotic cysts suggests spindle orientation is mediated by the microtubule motor cytoplasmic dynein. Later in oogenesis, dynein function is necessary for proper differentiation, but does not appear to participate in morphogen localization within the oocyte. These results provide evidence for a novel developmental role for the cytoplasmic dynein motor in cellular determination and differentiation.

REFERENCES

    1. Berleth T.,
    2. Burri M.,
    3. Thoma G.,
    4. Bopp D.,
    5. Richstein S.,
    6. Frigerio G.,
    7. Noll M.,
    8. Nusslein-Volhard C.
    (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7, 1749–1756
    OpenUrlPubMedWeb of Science
    1. Bobola N.,
    2. Jansen R.-P.,
    3. Shin T. H.,
    4. Nasmyth K.
    (1996) Asymmetric accumulation of Ash1p in post anaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699–709
    OpenUrlCrossRefPubMedWeb of Science
    1. Byers T. J.,
    2. Dubreuil R. R.,
    3. Branton D.,
    4. Keihart D. P.,
    5. Goldstein L. S. B.
    (1987) Drosophila spectrin. II. Conserved features of the alpha-subunit are revealed by analysis of cDNA clones and fusion proteins. J. Cell Biol 105, 2103–2110
    OpenUrlAbstract/FREE Full Text
    1. Cheng N. N.,
    2. Kirby C. M.,
    3. Kemphues K. J.
    (1995) Control of cleavage spindle orientation in C. elegans: the role of the genes par-2 and par-3. Genetics 139, 549–559
    OpenUrlAbstract/FREE Full Text
    1. Chou T.-B.,
    2. Noll E.,
    3. Perrimon N.
    (1993) Autosomal P [ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369
    OpenUrlAbstract
    1. Clark I.,
    2. Giniger E.,
    3. Ruohola-Baker H.,
    4. Jan L. Y.,
    5. Jan Y. N.
    (1994) Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr. Biol 4, 289–300
    OpenUrlCrossRefPubMedWeb of Science
    1. Cox K.,
    2. DeLeon D. V.,
    3. Angerer L. M.,
    4. Angerer R. C.
    (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biology 101, 485–502
    OpenUrlCrossRefPubMedWeb of Science
    1. de Cuevas M.,
    2. Lee J. K.,
    3. Spradling A. C.
    (1996) alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 122, 3959–3968
    OpenUrlAbstract
    1. Doe C. Q.
    (1996) Spindle orientation and asymmetric localization in Drosophila: both inscuteable?. Cell 86, 695–697
    OpenUrlCrossRefPubMed
    1. Dubreuil R. R.,
    2. Byers T. J.,
    3. Branton D.,
    4. Goldstein L. S. B.,
    5. Kiehart D. P.
    (1987) Drosophila spectrin. I. Characterization of the purified protein. J. Cell Biol 105, 2095–2102
    OpenUrlAbstract/FREE Full Text
    1. Ephrussi A.,
    2. Dickinson L.,
    3. Lehmann R.
    (1991) oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Etemad-Moghadam B.,
    2. Guo S.,
    3. Kemphues K. J.
    (1995) Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752
    OpenUrlCrossRefPubMedWeb of Science
    1. Gepner J.,
    2. Li M.-g.,
    3. Ludmann S.,
    4. Kortas C.,
    5. Boylan B.,
    6. Iyadurai S. J. P.,
    7. McGrail M.,
    8. Hays T. S.
    (1996) Cytoplasmic dynein function is essential in Drosophila. Genetics 142, 865–878
    OpenUrlAbstract/FREE Full Text
    1. Golic K. G.,
    2. Lindquist S.
    (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509
    OpenUrlCrossRefPubMedWeb of Science
    1. Golic K. G.
    (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961
    OpenUrlAbstract/FREE Full Text
    1. Gonzalez-Reyes A.,
    2. Elliott H.,
    3. St. Johnston D.
    (1995) Polarization of both major body axes in Drosophila by gurken - torpedo signalling. Nature 375, 654–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Guo S.,
    2. Kemphues K. J.
    (1995) par-1, a gene required for establishing polarity in C. elegans embryos encodes a putative ser/thr kinase that is asymmetrically distributed. Cell 81, 611–620
    OpenUrlCrossRefPubMedWeb of Science
    1. Guo S.,
    2. Kemphues K. J.
    (1996) A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458
    OpenUrlCrossRefPubMed
    1. Hays T. S.,
    2. Porter M. E.,
    3. McGrail M.,
    4. Grissom P.,
    5. Gosch P.,
    6. Fuller M. T.,
    7. McIntosh J. R.
    (1994) A cytoplasmic dynein motor in Drosophila: identification and localization during embryogenesis. J. Cell Sci 107, 1557–1569
    OpenUrlAbstract/FREE Full Text
    1. Holleran E.,
    2. Tokito M. K.,
    3. Karki S.,
    4. Holzbaur E. L. F.
    (1996) Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol 135, 1815–1829
    OpenUrlAbstract/FREE Full Text
    1. Holzbaur E. L. F.,
    2. Vallee R. B.
    (1994) Dyneins: molecular structure and cellular function. Annu. Rev. Cell Biol 10, 339–372
    OpenUrlCrossRefWeb of Science
    1. Jansen R.-P.,
    2. Dowzer C.,
    3. Michaelis C.,
    4. Galova M.,
    5. Nasmyth K.
    (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84, 687–697
    OpenUrlCrossRefPubMedWeb of Science
    1. Kemphues K. J.,
    2. Priess J. R.,
    3. Morton D. G.,
    4. Cheng N.
    (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320
    OpenUrlCrossRefPubMedWeb of Science
    1. Kraut R.,
    2. Chia W.,
    3. Jan L. Y.,
    4. Jan Y. N.,
    5. Knoblich J. A.
    (1996) Role ofinscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55
    OpenUrlCrossRefPubMedWeb of Science
    1. Lane M. E.,
    2. Kalderon D.
    (1994) RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA-mediated transduction to direct normal microtubule organization. Genes Dev 8, 2986–2995
    OpenUrlAbstract/FREE Full Text
    1. Lehmann R.
    (1995) Cell-cell signaling, microtubules and the loss of symmetry in the Drosophila oocyte. Cell 83, 353–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Li Y. Y.,
    2. Yeh E.,
    3. Hays T. S.,
    4. Bloom K.
    (1993) Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl. Acad. Sci. USA 90, 10096–10100
    OpenUrlAbstract/FREE Full Text
    1. Li M.-g.,
    2. McGrail M.,
    3. Serr M.,
    4. Hays T. S.
    (1994) Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte. J. Cell Biol 126, 1475–1494
    OpenUrlAbstract/FREE Full Text
    1. Lin S. X.,
    2. Ferro K. L.,
    3. Collins C. A.
    (1994) Cytoplasmic dynein undergoes intracellular redistribution concommitant with phosphorylation of the heavy chain in response to serum starvation and okadaic acid. J. Cell Biol 127, 1009–1019
    OpenUrlAbstract/FREE Full Text
    1. Lin H.,
    2. Yue L.,
    3. Spradling A. C.
    (1994) The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120, 947–956
    OpenUrlAbstract
    1. Mahajan-Miklos S.,
    2. Cooley L.
    (1994) Intercellular cytoplasm transport during Drosophila oogenesis. Dev. Biol 165, 336–351
    OpenUrlCrossRefPubMedWeb of Science
    1. Mahowald A.P.,
    2. Strassheim J. M.
    (1970). Intercellular migration of centrioles in the germarium of Drosophilamelanogaster. An electron microscopic study. J. Cell Biol 45, 306–320
    OpenUrlAbstract/FREE Full Text
    1. McGrail M.,
    2. Gepner J.,
    3. Silvanovich A.,
    4. Ludmann S.,
    5. Serr M.,
    6. Hays T. S.
    (1995) Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J. Cell Biol 131, 411–425
    OpenUrlAbstract/FREE Full Text
    1. Neuman-Silberberg F. S.,
    2. Schupbach T.
    (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF-like protein. Cell 75, 165–174
    OpenUrlCrossRefPubMedWeb of Science
    1. Niclas J.,
    2. Allan V. J.,
    3. Vale R. D.
    (1996) Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol 133, 585–593
    OpenUrlAbstract/FREE Full Text
    1. Paschal B. M.,
    2. Vallee R. B.
    (1987) Retrograde transport by the microtubule-associated protein MAP1C. Nature 330, 181–183
    OpenUrlCrossRefPubMedWeb of Science
    1. Price J. V.,
    2. Clifford R. J.,
    3. Schupbach T.
    (1989) The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal and encodes the Drosophila EGF receptor homolog. Cell 56, 1085–1092
    OpenUrlCrossRefPubMed
    1. Pokrywka N. J.,
    2. Stephenson E. C.
    (1991) Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development 113, 55–66
    OpenUrlAbstract
    1. Porter M. E.
    (1996) Axonemal dyneins: assembly, organization and regulation. Curr. Opin. Cell Biol 8, 10–17
    OpenUrlCrossRefPubMedWeb of Science
    1. Roth S.,
    2. Neuman-Silberberg F. S.,
    3. Barcelo G.,
    4. Schupbach T.
    (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967–978
    OpenUrlCrossRefPubMedWeb of Science
    1. Rhyu M. S.,
    2. Knoblich J. A.
    (1995) Spindle orientation and asymmetric cell fate. Cell 82, 523–526
    OpenUrlCrossRefPubMedWeb of Science
    1. St. Johnston D.
    (1995) The intracellular localization of messenger RNAs. Cell 81, 161–170
    OpenUrlCrossRefPubMedWeb of Science
    1. St. Johnston D.,
    2. Beuchle D.,
    3. Nusslein-Volhard C.
    (1991) staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Schejter E. D.,
    2. Shilo B.-Z.
    (1989) The Drosophila EGF receptor homologue (DER) is allelic to faint little ball, a locus essential for embryonic development. Cell 56, 1091–1101
    OpenUrl
    1. Schupbach T.
    (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49, 699–707
    OpenUrlCrossRefPubMedWeb of Science
    1. Schroer T. A.
    (1994) Structure, function and regulation of cytoplasmic dynein. Curr. Opin. Cell Biol 6, 69–73
    OpenUrlCrossRefPubMedWeb of Science
    1. Storto P. D.,
    2. King R. C.
    (1989) The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev. Genet 10, 70–86
    OpenUrlCrossRefPubMedWeb of Science
    1. Strome S.
    (1993) Determination of cleavage planes. Cell 72, 3–6
    OpenUrlCrossRefPubMedWeb of Science
    1. Suter B.,
    2. Steward R.
    (1991) Requirement for phosphorylation and localization of the Bicaudal-D protein in Drosophila oocyte differentiation. Cell 67, 917–926
    OpenUrlCrossRefPubMedWeb of Science
    1. Tautz D.,
    2. Pfeifle C.
    (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85
    OpenUrlCrossRefPubMedWeb of Science
    1. Theurkauf W. E.,
    2. Smiley S.,
    3. Wong M. L.,
    4. Alberts B. M.
    (1992) Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923–936
    OpenUrlAbstract
    1. Theurkauf W. E.,
    2. Alberts B. M.,
    3. Jan Y. N.,
    4. Jongens T. A.
    (1993) A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180
    OpenUrlAbstract/FREE Full Text
    1. Theurkauf W. E.
    (1994) Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol 165, 352–360
    OpenUrlCrossRefPubMed
    1. Vallee R. B.,
    2. Sheetz M. P.
    (1996) Targeting of motor proteins. Science 271, 1539–1544
    OpenUrlAbstract
    1. White J.,
    2. Strome S.
    (1996) Cleavage plane specification in C. elegans: how to divide the spoils. Cell 84, 195–198
    OpenUrlCrossRefPubMedWeb of Science
    1. Yeh E.,
    2. Skibbens R. V.,
    3. Cheng J. W.,
    4. Salmon E. D.,
    5. Bloom K.
    (1995) Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol 130, 687–700
    OpenUrlAbstract/FREE Full Text
    1. Yue L.,
    2. Spradling A.
    (1992) hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev 6, 2443–2454
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila
M. McGrail, T.S. Hays
Development 1997 124: 2409-2419;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila
M. McGrail, T.S. Hays
Development 1997 124: 2409-2419;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992