Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Gli1 is a target of Sonic hedgehog that induces ventral neural tube development
J. Lee, K.A. Platt, P. Censullo, A. Ruiz i Altaba
Development 1997 124: 2537-2552;
J. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.A. Platt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Censullo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Ruiz i Altaba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The vertebrate zinc finger genes of the Gli family are homologs of the Drosophila gene cubitus interruptus. In frog embryos, Gli1 is expressed transiently in the prospective floor plate during gastrulation and in cells lateral to the midline during late gastrula and neurula stages. In contrast, Gli2 and Gli3 are absent from the neural plate midline with Gli2 expressed widely and Gli3 in a graded fashion with highest levels in lateral regions. In mouse embryos, the three Gli genes show a similar pattern of expression in the neural tube but are coexpressed throughout the early neural plate. Because Gli1 is the only Gli gene expressed in prospective floor plate cells of frog embryos, we have investigated a possible involvement of this gene in ventral neural tube development. Here we show that Shh signaling activates Gli1 transcription and that widespread expression of endogenous frog or human glioma Gli1, but not Gli3, in developing frog embryos results in the ectopic differentiation of floor plate cells and ventral neurons within the neural tube. Floor-plate-inducing ability is retained when cytoplasmic Gli1 proteins are forced into the nucleus or are fused to the VP16 transactivating domain. Thus, our results identify Gli1 as a midline target of Shh and suggest that it mediates the induction of floor plate cells and ventral neurons by Shh acting as a transcriptional regulator.

REFERENCES

    1. Alexandre C.,
    2. Jacinto A.,
    3. Ingham P. W.
    (1996) Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by theCubitus interruptus protein, a member of the Gli family of zinc finger DNA-binding proteins. GenesDev 10, 2003–2013
    OpenUrlAbstract/FREE Full Text
    1. Ang S. L.,
    2. Wierda A.,
    3. Wong D.,
    4. Stevens K. A.,
    5. Cascio S.,
    6. Rossant J.,
    7. Zaret K. S.
    (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF-3/fork head proteins. Development 119, 1301–1315
    OpenUrlAbstract
    1. Barth K. A.,
    2. Wilson S. W.
    (1995). Zebrafish Nkx2.2 is regulated by sonic hedgehog/vertebrte hedgehog-1 and demarcates a neurogenic zone in the embryonic forebrain. Development 121, 1755–1768
    OpenUrlAbstract
    1. Belloni E.,
    2. Muenke M.,
    3. Roessler E.,
    4. Traverso G.,
    5. Siegel-Bartelt J.,
    6. Frumkin A.,
    7. Mitchell H. F.,
    8. Donis-Keller H.,
    9. Helms C.,
    10. Hing A. V.,
    11. Heng H. H. Q.,
    12. Koop B.,
    13. Martindale D.,
    14. Rommens J. M.,
    15. Tsui L.-C.,
    16. Scherer S. W.
    (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. NatureGenetics 14, 353–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Campbell M. E. M.,
    2. Palfreyman J. W.,
    3. Preston C. M.
    (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for the stimulation of immediate early trasncription. J. Mol. Biol 180, 1–19
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang D. T.,
    2. Lopez A.,
    3. von Kessler D. P.,
    4. Chiang C.,
    5. Simandl B. K.,
    6. Zhao R.,
    7. Seldin M. F.,
    8. Fallon J. F.,
    9. Beachy P. A.
    (1994) Products, genetic linkage, and limb patterning activity of a murine hedgehog gene. Development 120, 3339–3353
    OpenUrlAbstract
    1. Chen Y.,
    2. Struhl G.
    (1996) Dual roles for patched in sequestering and transducing hedgehog. Cell 87, 553–563
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonichedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Chitnis A.,
    2. Henrique D.,
    3. Lewis J.,
    4. Ish-Horowicz D.,
    5. Kintner C.
    (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766
    OpenUrlCrossRefPubMedWeb of Science
    1. Concordet J.-P.,
    2. Lewis K.E.,
    3. Moore J.W.,
    4. Goodrich L.V.,
    5. Johnson R.L.,
    6. Scott M.P.,
    7. Ingham P.W.
    (1996) Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 122, 2835–2846
    OpenUrlAbstract
    1. Conlon R. A.,
    2. Herrmann B. G.
    (1993) Detection of messenger RNA by in situ hybridization to postimplantation embryo whole mounts. Methods in Enzymology 225, 373–383
    OpenUrlCrossRefPubMedWeb of Science
    1. Dale L.,
    2. Slack J. M. W.
    (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99, 197–210
    OpenUrlAbstract
    1. Dale L.,
    2. Howes G.,
    3. Price B. M.,
    4. Smith J. C.
    (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585
    OpenUrlAbstract
    1. Dirksen M. L.,
    2. Jamrich M.
    (1992) A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev 6, 599–608
    OpenUrlAbstract/FREE Full Text
    1. Domínguez M.,
    2. Brunner M.,
    3. Hafen E.,
    4. Basler K.
    (1996) Sending and receiving the hedgehog signal: control by the Drosophila Gli protein cubitus interruptus. Science 272, 1621–1625
    OpenUrlAbstract
    1. Eaton S.,
    2. Kornberg T. B.
    (1990) Repression of ci-D in posterior compartments of Drosophila by engrailed. Genes Dev 4, 1068–1077
    OpenUrlAbstract/FREE Full Text
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ekker S. C.,
    2. McGrew L. L.,
    3. Lai C.-J.,
    4. Lee J. J.,
    5. von Kessler D. P.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121, 2337–2347
    OpenUrlAbstract
    1. Epstein D. J.,
    2. Martí E.,
    3. Scott M. P.,
    4. McMahon A. P.
    (1996) Antagonizing cAMP dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122, 2885–2894
    OpenUrlAbstract
    1. Ericson J.,
    2. Muhr J.,
    3. Placzek M.,
    4. Lints T.,
    5. Jessell T. M.,
    6. Edlund T.
    (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Mortin S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Fainsod A.,
    2. Steinbeisser H.,
    3. De Robertis E. M.
    (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13, 5015–5025
    OpenUrlPubMedWeb of Science
    1. Fan C.-M.,
    2. Tessier-Lavigne M.
    (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186
    OpenUrlCrossRefPubMedWeb of Science
    1. Fan C.-M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Chang D. T.,
    5. Beachy P. A.,
    6. Tessier-Lavigne M.
    (1995) Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81, 457–465
    OpenUrlCrossRefPubMedWeb of Science
    1. Forbes A.J.,
    2. Nakano Y.,
    3. Taylor A. M.,
    4. Ingham P. W.
    (1993) Genetic analysis of hedgehog signalling in the Drosophila embryo. Development 1993, 115–124
    1. Franz T.
    (1994) Extra-Toes (Xt) Homozygous Mutant Mice Demonstrate a Role for the Gli-3 Gene in the Development of the Forebrain. Acta Anat 150, 38–44
    OpenUrlPubMedWeb of Science
    1. Fu X.-D.,
    2. Maniatis T.
    (1990) Factor required for mamalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343, 437–441
    OpenUrlCrossRefPubMedWeb of Science
    1. Goodrich L. V.,
    2. Johnson R. L.,
    3. Milenkovic L.,
    4. McMahon J. A.,
    5. Scott M. P.
    (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Development 10, 301–312
    OpenUrlAbstract/FREE Full Text
    1. Goulding M.,
    2. Lumsden A.,
    3. Gruss P.
    (1993) Signals from the notochord and floor plate regulate the region-specific expression of two pax genes in the developing spinal cord. Development 117, 1001–1016
    OpenUrlAbstract
    1. Hahn H.,
    2. Wicking C.,
    3. Zaphiropoulous P. G.,
    4. Gailani M. R.,
    5. Shanley S.,
    6. Chidambaram A.,
    7. Vorechovsky I.,
    8. Holmberg E.,
    9. Unden A. B.,
    10. Gillies S.,
    11. Negus K.,
    12. Smyth I.,
    13. Pressman C.,
    14. Leffell. D. J.,
    15. Gerrard B.,
    16. Goldstein A. M.,
    17. Dean M.,
    18. Toftgard R.,
    19. Chenevix-Trench G.,
    20. Wainwrught B.,
    21. Bale A. E.
    (1996) Mutations of the human homolog of Drosohila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–951
    OpenUrlCrossRefPubMedWeb of Science
    1. Hammerschmidt M.,
    2. Bitgood M. J.,
    3. McMahon A. P.
    (1996) Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 10, 647–658
    OpenUrlAbstract/FREE Full Text
    1. Harland R. M.
    (1991) In situ hybridization: an improved whole mount method for Xenopus embryos. Meth. Enzymol 36, 675–685
    OpenUrl
    1. Hemmati-Brivanlou A.,
    2. Thomsen G.
    (1995) Ventral mesodermal patterning in Xenopus embros: expression patterns and activities of BMP-2 and BMP-4. Dev. Genetics 17, 78–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C.-C.,
    2. Joyner A. L.
    (1993) A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics 3, 241–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C.-C.,
    2. Slusarski D.,
    3. Platt K. A.,
    4. Holmgren R.,
    5. Joyner A. L.
    (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev. Biol 162, 402–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Porter J. A.,
    3. Chians C.,
    4. Chang D.,
    5. Tessier-Lavigne M.,
    6. Beachy P. A.
    (1995) Induction of midbrain dopaminergic neurons by sonic hedgehog. Neuron 15, 35–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson D. R.
    (1967) Extra-toes: a new mutant gene causing multiple abnormalities in the mouse. J. Embryol. Exp. Morph 17, 543–581
    OpenUrlPubMedWeb of Science
    1. Johnson R. L.,
    2. Rothman A. L.,
    3. Xie J.,
    4. Goodrich L. V.,
    5. Bare J. W.,
    6. Bonifas J. M.,
    7. Quinn A. G.,
    8. Myers R. M.,
    9. Cox D.R.,
    10. Epstein E. H., Jr.,
    11. Scott M. P.
    (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671
    OpenUrlAbstract
    1. Kelsey-Motzny C.,
    2. Holmgren R.
    (1995) The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev 52, 137–150
    OpenUrlCrossRefPubMedWeb of Science
    1. Kintner C. R.,
    2. Melton D. A.
    (1987) Expression of the Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 99, 311–325
    OpenUrlAbstract
    1. Kinzler K. W.,
    2. Bigner S. H.,
    3. Bigner D. D.,
    4. Trent J. M.,
    5. Law M. L.,
    6. O'Brien S. J.,
    7. Wong A. J.,
    8. Vogelstein B.
    (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236, 70–73
    OpenUrlAbstract/FREE Full Text
    1. Kinzler K. W.,
    2. Ruppert J. M.,
    3. Bigner S. H.,
    4. Vogelstein B.
    (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332, 371–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Kinzler K. W.,
    2. Vogelstein B.
    (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol. Cell Biol 10, 634–642
    OpenUrlAbstract/FREE Full Text
    1. Knöchel S.,
    2. Lef J.,
    3. Clement J.,
    4. Klocke B.,
    5. Hille S.,
    6. Koster M.,
    7. Knöchel W.
    (1992) Activin A-induced expression of a fork-head-related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech. Dev 38, 157–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Krauss S.,
    2. Concordet J.-P.,
    3. Ingham P. W.
    (1993) A functionallyconserved homolog of the Drosophila segment polarity gene hedgehog is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Larsson S. H.,
    2. Charlieu J.-P.,
    3. Miyagawa K.,
    4. Engelkamo D.,
    5. Rassoulzadegan M.,
    6. Ross A.,
    7. Cuzin F.,
    8. van Heyningen V.,
    9. Hastie N. D.
    (1995) Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391–401
    OpenUrlCrossRefPubMedWeb of Science
    1. Lazzaro D.,
    2. Price M.,
    3. De Felice M.,
    4. Di Lauro R.
    (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113, 1093–1104
    OpenUrlAbstract
    1. Liem K. F., Jr.,
    2. Tremmel G.,
    3. Roelink H.,
    4. Jessell T. M.
    (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979
    OpenUrlCrossRefPubMedWeb of Science
    1. Marigo V.,
    2. Scott M. P.,
    3. Johnson R. L.,
    4. Goodrich L. V.,
    5. Tabin C. J.
    (1996) Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122, 1225–1233
    OpenUrlAbstract
    1. Marigo V.,
    2. Tabin C. J.
    (1996) Regulation of Patched by Sonic hedgehog in the developing neural tube. Proc. Natl. Acad. Sci. USA 93, 9346–9351
    OpenUrlAbstract/FREE Full Text
    1. Marigo V.,
    2. Davey R. A.,
    3. Zuo Y.,
    4. Cunningham J. M.,
    5. Tabin C. J.
    (1996) Biochemical evidence that patched is the hedgehog receptor. Nature 384, 176–179
    OpenUrlCrossRefPubMedWeb of Science
    1. Martí E.,
    2. Bumcrot D. A.,
    3. Takada R.,
    4. McMahon A. P.
    (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325
    OpenUrlCrossRefPubMedWeb of Science
    1. Martí E.,
    2. Takada R.,
    3. Bumcrot D. A.,
    4. Sasaki H.,
    5. McMahon A. P.
    (1995) Distribution of sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547
    OpenUrlAbstract
    1. Masuya H.,
    2. Sagai T.,
    3. Wakana S.,
    4. Moriwaki K.,
    5. Shiroishi T.
    (1995) A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 13, 1645–1653
    OpenUrl
    1. Monaghan A. P.,
    2. Kaestner K. H.,
    3. Grau E.,
    4. Schutz G.
    (1993) Postimplanation expression patterns indicate a role for the mouse forkhead/HNF-3, andgenes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567–578
    OpenUrlAbstract/FREE Full Text
    1. Nishimatsu S.,
    2. Suzuki A.,
    3. Shoda A.,
    4. Murakami K.,
    5. Ueno N.
    (1992) Genes for bone morphogenetic proteins are differentiatlly transcribed in early amphibian embryos. Biochem. Biophys. Res. Com 186, 1487–1495
    OpenUrlCrossRefPubMedWeb of Science
    1. Orenic T. V.,
    2. Slusarski D. C.,
    3. Kroll K. L.,
    4. Holmgren R. A.
    (1990) Cloning and characterization of the segment polarity gene cubitus interruptus dominant of Drosophila. Genes Dev 4, 1053–1067
    OpenUrlAbstract/FREE Full Text
    1. Patel N. H.,
    2. Martin-Blanco E.,
    3. Coleman K. G.,
    4. Poole S. J.,
    5. Ellis M. C.,
    6. Kornberg T. B.,
    7. Goodman C. S.
    (1989) Expression of engrailed proteins in arthropods, annelids and chordates. Cell 58, 955–968
    OpenUrlCrossRefPubMedWeb of Science
    1. Pavletich N. P.,
    2. Pabo C. O.
    (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261, 1701–1707
    OpenUrlAbstract/FREE Full Text
    1. Perrimon N.
    (1995) Hedgehog and beyond. Cell 80, 517–520
    OpenUrlCrossRefPubMedWeb of Science
    1. Placzek M.,
    2. Tessier-Lavigne M.,
    3. Yamada T.,
    4. Jessell T. M.,
    5. Dodd J.
    (1990) Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250, 985–988
    OpenUrlAbstract/FREE Full Text
    1. Placzek M.,
    2. Jessell T. M.,
    3. Dodd J.
    (1993) Induction of floor plate differentiation by contact-dependent, homeogenetic signals. Development 117, 205–218
    OpenUrlAbstract/FREE Full Text
    1. Pourquie O.,
    2. Coltey M.,
    3. Breant C.,
    4. Le Douarin N. M.
    (1995) Control of somite patterning by signals from the lateral plate. Proc. Natl. Acad. Sci. USA 92, 3219–3223
    OpenUrlAbstract/FREE Full Text
    1. Pourquie O.,
    2. Fan C.-M.,
    3. Coltey M.,
    4. Hirsinger E.,
    5. Watanabe Y.,
    6. Breant C.,
    7. Francis-West P.,
    8. Brickell P.,
    9. Tessier-Lavigne M.,
    10. Le Douarin N. M.
    (1996) Lateral and axial signals involved in somite patterning: a role for BMP-4. Cell 84, 461–471
    OpenUrlCrossRefPubMedWeb of Science
    1. Price M.,
    2. Lazzaro D.,
    3. Pohl T.,
    4. Mattei M.-G.,
    5. Ruther U.,
    6. Olivo J.-C.,
    7. Duboule D.,
    8. Di Lauro R.
    (1992). Regional expression of the homeobox gene Nkx2.2 in the developing mammalian forebrain. Neuron 8, 241–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Richter K.,
    2. Grunz H.,
    3. Dawid I. B.
    (1988) Gene expression in the embryonic nervous system of Xenopus laevis. Proc. Natl. Acad. Sci. USA 85, 8086–8090
    OpenUrlAbstract/FREE Full Text
    1. Riddle R.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 751, 401–1418
    OpenUrl
    1. Roberts W. M.,
    2. Douglass E. C.,
    3. Peiper S. C.,
    4. Houghton P. J.,
    5. Look A. T.
    (1989) Amplification of the gli gene in childhood sarcomas. Cancer Research 49, 5407–5413
    OpenUrlAbstract/FREE Full Text
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T. M.,
    11. Dodd J.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Roessler E.,
    2. Belloni E.,
    3. Gaudenz K.,
    4. Jay P.,
    5. Berta P.,
    6. Scherer S. W.,
    7. Tsui L.-C.,
    8. Muenke M.
    (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genetics 14, 357–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1992) Cooperation of Planar and Vertical Signals in the Induction and Patterning of the Xenopus Nervous System. Development 115, 67–80
    OpenUrlAbstract
    1. Ruiz i Altaba A.
    (1994) Pattern formation in the vertebrate neural plate. Trends Neurosci 17, 233–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945–958
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1992) Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. Development 116, 81–93
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Prezioso V. R.,
    3. Darnell J. E.,
    4. Jessell T. M.
    (1993) Sequential expression of HNF-3and HNF-3 by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech. Dev 44, 91–108
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Cox C.,
    3. Jessell T. M.,
    4. Klar A.
    (1993) Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc. Natl. Acad. Sci. USA 90, 8268–8272
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Jessell T. M.,
    3. Roelink H.
    (1995) Restrictions to floor plate induction by hedgehog and winged-helix genes in the neural tube of frog embryos. Mol. Cell. Neurosci 6, 106–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Placzek M.,
    3. Baldassare M.,
    4. Dodd J.,
    5. Jessell T. M.
    (1995) Early stages of notochord and floor plate differentiation defined by normal and induced expression of HNF-3in chick embryos. Dev. Biol 170, 299–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Rupp R. A. W.,
    2. Snider L.,
    3. Weintraub H.
    (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev 8, 1311–1323
    OpenUrlAbstract/FREE Full Text
    1. Ruppert J. M.,
    2. Kinzler K. W.,
    3. Wong A. J.,
    4. Bigner S. H.,
    5. Kao F. T.,
    6. Law M. L.,
    7. Seuanez H. N.,
    8. O'Brien S. J.,
    9. Vogelstein B.
    (1988) The GLI-Kruppel family of human genes. Mol. Cell. Biol 8, 3104–3113
    OpenUrlAbstract/FREE Full Text
    1. Ruppert J. M.,
    2. Vogelstein B.,
    3. Arheden K.,
    4. Kinzler K.W.
    (1990) GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol. Cell Biol 10, 5408–5415
    OpenUrlAbstract/FREE Full Text
    1. Ruppert J.M.,
    2. Vogelstein B.,
    3. Kinzler K.W.
    (1991) The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol. Cell Biol 11, 1724–1728
    OpenUrlAbstract/FREE Full Text
    1. Sánchez-Herrero E.,
    2. Couso J. P.,
    3. Capdevila J.,
    4. Guerrero I.
    (1996) The fu gene discriminates between pathways to control dpp expression in Drosophila imaginal discs. Mech. Dev 55, 159–170
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasaki H.,
    2. Hogan B.
    (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47–59
    OpenUrlAbstract
    1. Sasaki H.,
    2. Hogan B.
    (1994) HNF-3as a regulator of floor plate development. Cell 76, 103–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Schimmang T.,
    2. Lemaistre M.,
    3. Vortkamp A.,
    4. Ruther U.
    (1992) Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116, 799–804
    OpenUrlAbstract
    1. Simon H.,
    2. Hornbruch A.,
    3. Lumsden A.
    (1995) Independent assignment of antero-posterior and dorso-ventral positional values in the developing chick hindbrain. Current Biol 5, 205–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Slusarski D.C.,
    2. Kelsey Motzny C.,
    3. Holmgren R.
    (1995) Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster. Genetics 139, 229–240
    OpenUrlAbstract/FREE Full Text
    1. Stone D. M.,
    2. Hynes M.,
    3. Armanini M.,
    4. Swanson T. A.,
    5. Gu Q.,
    6. Johnson R. L.,
    7. Scott M. P.,
    8. Pennica D.,
    9. Goddard A.,
    10. Phillips H.,
    11. Noll M.,
    12. Hooper J. E.,
    13. de Sauvage F.,
    14. Rosenthal A.
    (1996) The tumor suppressor genepatched encodes a candidate receptor for sonic hedgehog. Nature 384, 129–134
    OpenUrlCrossRefPubMedWeb of Science
    1. Strähle U.,
    2. Blader P.,
    3. Henrique D.,
    4. Ingham P. W.
    (1993) Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev 7, 1436–1446
    OpenUrlAbstract/FREE Full Text
    1. Tanabe Y.,
    2. Roelink H.,
    3. Jessell T. M.
    (1995) Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation. Current Biology 5, 651–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanimura A.,
    2. Teshima H.,
    3. Fujisawa J.,
    4. Yoshida M.
    (1993) A new regulatory element that augments the Tax-dependent enhancer of human T-cell leukemia virus type 1 and cloning of cDNAs encoding its binding proteins. J. Virology 67, 5375–5382
    OpenUrlAbstract/FREE Full Text
    1. Triezenberg S. J.,
    2. Kingsbury R. C.,
    3. McKnight S. L.
    (1988) Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. GenesDev 2, 718–729
    OpenUrlAbstract/FREE Full Text
    1. Turner D. L.,
    2. Weintraub H.
    (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. GenesDev 8, 1434–1447
    OpenUrlAbstract/FREE Full Text
    1. van Mier P.,
    2. Joosten H. W. J.,
    3. van Rheden R.,
    4. Ten Donkelaar H. J.
    (1986) The development of serotonergic raphespinal projections in Xenopus laevis. Int. J. Develop. Neurosci 24, 465–476
    OpenUrl
    1. van Straaten H. W. M.,
    2. Hekking J. W. M.,
    3. Wiertz-Hoessels E. L.,
    4. Thors F.,
    5. Drukker J.
    (1988) Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo. Anat. Embryol 177, 317–324
    OpenUrlCrossRefPubMed
    1. van Straaten H. W. M.,
    2. Hekking J. W. M.
    (1991) Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat. Embryol 184, 55–63
    OpenUrlCrossRefPubMed
    1. Vortkamp A.,
    2. Gessler M.,
    3. Grzeschik K.-H.
    (1991) GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540
    OpenUrlCrossRefPubMedWeb of Science
    1. Walterhouse D.,
    2. Ahmed M.,
    3. Slusarski D.,
    4. Kalamaras J.,
    5. Boucher D.,
    6. Holmgren R.,
    7. Iannaccone P.
    (1993) gli, a zinc finger transcription factor and oncogene, is expressed during normal mouse development. Dev. Dyn 196, 91–102
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamada T.,
    2. Placzek M.,
    3. Tanaka H.,
    4. Dodd J.,
    5. Jessell T. M.
    (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate notochord. Cell 64, 635–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Zarkower D.,
    2. Hodgkin J.
    (1992) Molecular Analysis of the C. elegans Sex-Determining Gene tra-1: A Gene Encoding Two Zinc Finger Proteins. Cell 70, 237–249
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gli1 is a target of Sonic hedgehog that induces ventral neural tube development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Gli1 is a target of Sonic hedgehog that induces ventral neural tube development
J. Lee, K.A. Platt, P. Censullo, A. Ruiz i Altaba
Development 1997 124: 2537-2552;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Gli1 is a target of Sonic hedgehog that induces ventral neural tube development
J. Lee, K.A. Platt, P. Censullo, A. Ruiz i Altaba
Development 1997 124: 2537-2552;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992