Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo
R. Maeda, A. Kobayashi, R. Sekine, J.J. Lin, H. Kung, M. Maeno
Development 1997 124: 2553-2560;
R. Maeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Kobayashi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Sekine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.J. Lin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Kung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Maeno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

This study analyzes the expression and the function of Xenopus msx-1 (Xmsx-1) in embryos, in relation to the ventralizing activity of bone morphogenetic protein-4 (BMP-4). Expression of Xmsx-1 was increased in UV-treated ventralized embryos and decreased in LiCl-treated dorsalized embryos at the neurula stage (stage 14). Whole-mount in situ hybridization analysis showed that Xmsx-1 is expressed in marginal zone and animal pole areas, laterally and ventrally, but not dorsally, at mid-gastrula (stage 11) and late-gastrula (stage 13) stages. Injection of BMP-4 RNA, but not activin RNA, induced Xmsx-1 expression in the dorsal marginal zone at the early gastrula stage (stage 10+), and introduction of a dominant negative form of BMP-4 receptor RNA suppressed Xmsx-1 expression in animal cap and ventral marginal zone explants at stage 14. Thus, Xmsx-1 is a target gene specifically regulated by BMP-4 signaling. Embryos injected with Xmsx-1 RNA in dorsal blastomeres at the 4-cell stage exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Histological observation and immunostaining revealed that these embryos had a large block of muscle tissue in the dorsal mesodermal area instead of notochord. On the basis of molecular marker analysis, however, the injection of Xmsx-1 RNA did not induce the expression of alpha-globin, nor reduce cardiac alpha-actin in dorsal marginal zone explants. Furthermore, a significant amount of alpha-actin was induced and alpha-globin was turned off in the ventral marginal zone explants injected with Xmsx-1. These results indicated that Xmsx-1 is a target gene of BMP-4 signaling, but possesses a distinct activity on dorsal-ventral patterning of mesodermal tissues.

REFERENCES

    1. Ariizumi T.,
    2. Asashima M.
    (1994) In vitro control of the embryonic form of Xenopus laevis by activin A: Time and dose-dependent inducing properties of activin-treated ectoderm. Dev. Growth Differ 36, 499–507
    OpenUrlCrossRefWeb of Science
    1. Ault K. T.,
    2. Dirksen M. L.,
    3. Jamrich M.
    (1996). A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 6415–6420
    OpenUrlAbstract/FREE Full Text
    1. Baylies M. K.,
    2. Bate M.
    (1996) twist: A myogenic switch in Drosophila. Science 272, 1481–1484
    OpenUrlAbstract
    1. Chen Y. P.,
    2. Solursh M.
    (1995) Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of msx-1 gene. J. Exp. Zool 273, 170–174
    OpenUrlCrossRefPubMed
    1. Chen Y. P.,
    2. Bei M.,
    3. Woo I.,
    4. Satokata I.,
    5. Maas R.
    (1996) Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122, 3035–3044
    OpenUrlAbstract
    1. Cho K. W. Y.,
    2. Blumberg B.,
    3. Steinbeisser H.,
    4. De Robertis E.
    (1991) Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120
    OpenUrlCrossRefPubMedWeb of Science
    1. Christian J. L.,
    2. Moon R. T.
    (1993) Interaction between Xwnt-8 and Spemann organizer signalling pathways generate dorsoventral patterning in the embryonic mesoderm of Xenopus. Genes Dev 7, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Coelho C. N. D.,
    2. Krabbenhoft K. M.,
    3. Upholt W. B.,
    4. Fallon J. F.,
    5. Kosher R. A.
    (1991) Altered expression of the chicken homeobox-containing genes Ghox-7 and Ghox-8 in the limb buds of limbless mutant chick embryos. Development 113, 1487–1493
    OpenUrlAbstract
    1. Dale L.,
    2. Howes G.,
    3. Price B. M. J.,
    4. Smith J. C.
    (1992) Bone morphogenetic protein 4: a ventralizing factor in Xenopus development. Development 115, 573–585
    OpenUrlAbstract
    1. Fainsod A.,
    2. Steinbeisser H.,
    3. De Robertis E. M.
    (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13, 5015–5025
    OpenUrlPubMedWeb of Science
    1. Gawantka V.,
    2. Delius H.,
    3. Hirschfeld K.,
    4. Blumenstock C.,
    5. Niehrs C.
    (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14, 6268–6279
    OpenUrlPubMedWeb of Science
    1. Graff J. M.,
    2. Thies S. R.,
    3. Song J. J.,
    4. Celeste A. J.,
    5. Melton D. A.
    (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179
    OpenUrlCrossRefPubMedWeb of Science
    1. Graff J. M.,
    2. Bansal A.,
    3. Melton D. A.
    (1996) Xenopus mad proteins transduce distinct subsets of signals for the TGF-superfamily. Cell 85, 479–487
    OpenUrlCrossRefPubMedWeb of Science
    1. Graham A.,
    2. Francis-West P.,
    3. Brickell P.,
    4. Lumsden A.
    (1994) The signalling molecule BMP-4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684–686
    OpenUrlCrossRefPubMed
    1. Harland R. M.
    (1991) In situ hybridization: An improved whole mount method for Xenopus embryos. Methods Cell Biol 36, 685–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Hemmati-Brivanlou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Lapan P. M.,
    4. Wright C. V. E.,
    5. Hogan B. L. M.
    (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus. Development 115, 639–647
    OpenUrlAbstract
    1. Kelley C.,
    2. Yee K.,
    3. Harland R.,
    4. Zon L. I.
    (1994) Ventral expression of GATA-1 and GATA-2 in the Xenopus embryo defines induction of hematopoietic mesoderm. Dev. Biol 165, 193–205
    OpenUrlCrossRefPubMedWeb of Science
    1. Krieg P. A.,
    2. Varnum S.,
    3. Wormington M.,
    4. Melton D. A.
    (1989) The mRNA encoding elongation factor 1(EF1) is a major transcript at the mid blastula transition in Xenopus. Dev. Biol 133, 93–100
    OpenUrlCrossRefPubMedWeb of Science
    1. Ladher R.,
    2. Mohun J.,
    3. Smith J. C.,
    4. Snape A.
    (1996) Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122, 2385–2394
    OpenUrlAbstract
    1. Lemaire P.,
    2. Garrett N.,
    3. Gurdon J. B.
    (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Liem K. F.,
    2. Tremmi G.,
    3. Roelink H.,
    4. Jessell T. M.
    (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu F.,
    2. Hata A.,
    3. Baker J. C.,
    4. Doody J.,
    5. Carcamo J.,
    6. Harland R. M.,
    7. Massague J.
    (1996) A human mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623
    OpenUrlCrossRefPubMed
    1. Lord P. C. W.,
    2. Lin M. H.,
    3. Hales K. H.,
    4. Storti R. V.
    (1995) Normal expression and the effects of ectopic expression of the Drosophilamuscle segment homeobox (msh) gene suggest a role in differentiation and patterning of embryonic muscles. Dev. Biol 171, 627–640
    OpenUrlCrossRefPubMedWeb of Science
    1. MacNicol A. M.,
    2. Muslin A. J.,
    3. Williams L. T.
    (1993) Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73, 571–583
    OpenUrlCrossRefPubMedWeb of Science
    1. Maeno M.,
    2. Ong R. C.,
    3. Suzuki A.,
    4. Ueno N.,
    5. Kung H. F.
    (1994) A truncated bone morphogenetic protein-4 receptor alters the fate of ventral mesoderm to dorsal mesoderm: roles of animal pole tissue in the development of ventral mesoderm. Proc. Natl. Acad. Sci. USA 91, 10260–10264
    OpenUrlAbstract/FREE Full Text
    1. Maeno M.,
    2. Ong R. C.,
    3. Xue Y.,
    4. Nishimatsu S.,
    5. Ueno N.,
    6. Kung H. F.
    (1994) Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue. Dev. Biol 161, 522–529
    OpenUrlCrossRefPubMedWeb of Science
    1. Maeno M.,
    2. Mead P. E.,
    3. Kelley C.,
    4. Xu R. H.,
    5. Kung H. F.,
    6. Suzuki A.,
    7. Ueno N.,
    8. Zon L. I.
    (1996) The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88, 1965–1972
    OpenUrlAbstract/FREE Full Text
    1. Mead P. E.,
    2. Brivanlou I. H.,
    3. Kelley C. M.,
    4. Zon L. I.
    (1996) BMP-4-responsive regulation of dorsal-ventral patterning by the homeobox protein mix-1. Nature 382, 357–360
    OpenUrlCrossRefPubMed
    1. Mohun T. J.,
    2. Brennan S.,
    3. Dathan N.,
    4. Fairman S.,
    5. Gurdon J. B.
    (1984) Cell type-specific activation of actin genes in the early amphibian embryo. Nature 311, 716–721
    OpenUrlCrossRefPubMed
    1. Moors M., Jr.,
    2. Wang S.,
    3. Krinks M.
    (1995) Anti-dorsalizing morphogenetic protein is a novel TGF-homolog expressed in the Spemann organizer. Development 121, 4293–4301
    OpenUrlAbstract
    1. Northrop J.,
    2. Woods A.,
    3. Seger R.,
    4. Suzuki A.,
    5. Ueno N.,
    6. Krebs E.,
    7. Kimelman D.
    (1995) BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus. Dev. Biol 172, 242–252
    OpenUrlCrossRefPubMedWeb of Science
    1. Onichtchouk D.,
    2. Gawantka V.,
    3. Dosch R.,
    4. Delius H.,
    5. Hirschfeld K.,
    6. Blumenstock C.,
    7. Niehrs C.
    (1996) The Xvent-2 homeobox gene is part of BMP-4 signalling pathway controling dorsoventral patterning of Xenopus mesoderm. Development 122, 3045–3053
    OpenUrlAbstract
    1. Robert B.,
    2. Sassoon D.,
    3. Jacq B.,
    4. Gehring W.,
    5. Buckingham M.
    (1989) Hox-7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO J 8, 91–100
    OpenUrlPubMedWeb of Science
    1. Robert B.,
    2. Lyons G.,
    3. Simandl B. K.,
    4. Kuroiwa A.,
    5. Buckingham M.
    (1991) The apical ectodermal ridge regulates Hox-7 and Hox-8 gene expression in developing limb buds. Genes Dev 5, 2363–2374
    OpenUrlAbstract/FREE Full Text
    1. Sasai Y.,
    2. Lu B.,
    3. Steinbeisser H.,
    4. Geissert D.,
    5. Gont L. K.,
    6. De Robertis E. M.
    (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasai Y.,
    2. Lu B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1995) Regulation of neural induction by the chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336
    OpenUrlCrossRefPubMed
    1. Schmidt J. E.,
    2. Suzuki A.,
    3. Ueno N.,
    4. Kimelman D.
    (1995) Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev. Biol 169, 37–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Schmidt J. E.,
    2. von Dassow G.,
    3. Kimelman D.
    (1996) Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development 122, 1711–1721
    OpenUrlAbstract
    1. Slack J. M. W.,
    2. Darlington B. G.,
    3. Heath J. K.,
    4. Godsave S. F.
    (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326, 197–200
    OpenUrlCrossRefPubMed
    1. Smith W. C.,
    2. Harland R. M.
    (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. Knecht A. K.,
    3. Wu M.,
    4. Harland R. M.
    (1993) Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361, 547–549
    OpenUrlCrossRefPubMed
    1. Song K.,
    2. Wang Y.,
    3. Sassoon D.
    (1992). Expression of Hox7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360, 477–481
    OpenUrlCrossRefPubMed
    1. Spicer D. B.,
    2. Rhee J.,
    3. Cheung W. L.,
    4. Lassar A. B.
    (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein twist. Science 272, 1476–1480
    OpenUrlAbstract
    1. Steinbeisser H.,
    2. Fainsod A.,
    3. Niehrs C.,
    4. Sasai Y.,
    5. De Robertis E. M.
    (1995) The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J 14, 5230–5243
    OpenUrlPubMedWeb of Science
    1. Su M. W.,
    2. Suzuki H. R.,
    3. Solursh M.,
    4. Ramirez F.
    (1991) Progressively restricted expression of a new homeobox-containing gene during Xenopus laevis embryogenesis. Development 111, 1179–1187
    OpenUrlAbstract/FREE Full Text
    1. Suzuki A.,
    2. Nishimatsu S.,
    3. Murakami K.,
    4. Ueno N.
    (1993) Differential expression of Xenopus BMPs in early embryos and tissues. Zool. Sci 10, 175–178
    OpenUrlPubMedWeb of Science
    1. Suzuki A.,
    2. Thies R. S.,
    3. Yamaji N.,
    4. Song J. J.,
    5. Wozney J. M.,
    6. Murakami K.,
    7. Ueno N.
    (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91, 10255–10259
    OpenUrlAbstract/FREE Full Text
    1. Suzuki A.,
    2. Shioda N.,
    3. Ueno N.
    (1995) Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Develop. Growth Differ 37, 581–588
    OpenUrlCrossRef
    1. Tureckova J.,
    2. Sahlberg C.,
    3. Aberg T.,
    4. Ruch J. V.,
    5. Thesleff I.,
    6. Peterkova R.
    (1995) Comparison of expression of the msx-1, msx-2, BMP-2 and BMP-4 genes in the mouse upper diastemal and molar tooth primordia. Int. J. Dev. Biol 39, 459–468
    OpenUrlPubMedWeb of Science
    1. Vainio S.,
    2. Karavanova I.,
    3. Jowett A.,
    4. Thesleff I.
    (1993) Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75, 45–58
    OpenUrlCrossRefPubMedWeb of Science
    1. Walmsley M.,
    2. Guille M. J.,
    3. Bertwistle D.,
    4. Smith J. C.,
    5. Pizzey J. A.,
    6. Patient R. K.
    (1994) Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. Development 120, 2519–2529
    OpenUrlAbstract/FREE Full Text
    1. Whitmann M.,
    2. Melton D. A.
    (1992) Involvement of p21ras in Xenopus mesoderm induction. Nature 357, 252–254
    OpenUrlCrossRefPubMed
    1. Wilson P. A.,
    2. Hemmati-Brivanlou A.
    (1995) Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376, 331–333
    OpenUrlCrossRefPubMedWeb of Science
    1. Woloshin P.,
    2. Song K.,
    3. Degnin C.,
    4. Killary A. M.,
    5. Goldhamer D. J.,
    6. Sassoon D.,
    7. Thayer M. J.
    (1995) Msx1 inhibits myoD expression in fibroblast × 10T1/2 cell hybrids. Cell 82, 611–620
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu R. H.,
    2. Dong Z.,
    3. Maeno M.,
    4. Kim J.,
    5. Suzuki A.,
    6. Ueno N.,
    7. Sredni D.,
    8. Colburn N. H.,
    9. Kung H. F.
    (1996) Involvement of RAS/RAF/AP-1 in BMP-4 signaling during Xenopus embryonic development. Proc. Natl. Acad. Sci. USA 93, 834–838
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo
R. Maeda, A. Kobayashi, R. Sekine, J.J. Lin, H. Kung, M. Maeno
Development 1997 124: 2553-2560;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo
R. Maeda, A. Kobayashi, R. Sekine, J.J. Lin, H. Kung, M. Maeno
Development 1997 124: 2553-2560;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992