Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye
T. Matsuo, K. Takahashi, S. Kondo, K. Kaibuchi, D. Yamamoto
Development 1997 124: 2671-2680;
T. Matsuo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Takahashi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Kondo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Kaibuchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Yamamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Cone cells are lens-secreting cells in ommatidia, the unit eyes that compose the compound eye of Drosophila. Each ommatidium contains four cone cells derived from precursor cells of the R7 equivalence group which express the gene sevenless (sev). When a constitutively active form of Ras1 (Ras1V12) is expressed in the R7 equivalence group cells using the sev promoter (sev-Ras1V12), additional cone cells are formed in the ommatidium. Expression of Ras1N17, a dominant negative form of Ras1, results in the formation of 1–3 fewer cone cells than normal in the ommatidium. The effects of Ras1 variants on cone cell formation are modulated by changing the gene dosage at the canoe (cno) locus, which encodes a cytoplasmic protein with Ras-binding activity. An increase or decrease in gene dosage potentiates the sev-Ras1v12 action, leading to marked induction of cone cells. A decrease in cno+ activity also enhances the sev-Ras1N17 action, resulting in a further decrease in the number of cone cells contained in the ommatidium. In the absence of expression of sev-Ras1V12 or sev-Ras1N17, an overdose of wild-type cno (cno+) promotes cone cell formation while a significant reduction in cno+ activity results in the formation of 1–3 fewer cone cells than normal in the ommatidium. We propose that there are two signaling pathways in cone cell development, one for its promotion and the other for its repression, and Cno functions as a negative regulator for both pathways. We also postulate that Cno predominantly acts on a prevailing pathway in a given developmental context, thereby resulting in either an increase or a decrease in the number of cone cells per ommatidium. The extra cone cells resulting from the interplay of Ras1v12 and Cno are generated from a pool of undifferentiated cells that are normally fated to develop into pigment cells or undergo apoptosis.

REFERENCES

    1. Baker N. E.,
    2. Rubin G. M.
    (1992) Ellipse mutation in the Drosophila homologue of the EGF receptor affect pattern formation, cell division, and cell death in eye imaginal discs. Dev. Biol 150, 381–396
    OpenUrlCrossRefPubMedWeb of Science
    1. Basler K.,
    2. Christen B.,
    3. Hafen E.
    (1991) Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fates of cells in the developing Drosophila eye. Cell 64, 1069–1081
    OpenUrlCrossRefPubMedWeb of Science
    1. Blochlinger K. L.,
    2. Jan L. Y.,
    3. Jan Y. N.
    (1993) Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila. Development 117, 441–450
    OpenUrlAbstract
    1. Brand A. H.,
    2. Perrimon N.
    (1993) Targeted gene expression as a means of altering cell fates and generating domoinant phenotypes. Development 118, 401–415
    OpenUrlAbstract
    1. Brakeman P. R.,
    2. Lanahan A. A.,
    3. O'Brien R.,
    4. Roche K.,
    5. Barnes C. A.,
    6. Huganir R. L.,
    7. Worley P. F.
    (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288
    OpenUrlCrossRefPubMedWeb of Science
    1. Brenman J. E.,
    2. Chao D. S.,
    3. Gee S. H.,
    4. McGee A. W.,
    5. Craven S. E.,
    6. Santillano D. R.,
    7. Wu Z.,
    8. Huang F.,
    9. Xia H.,
    10. Peters M. F.,
    11. Froehner S. C.,
    12. Bredt D. S.
    (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and1-syntrophin mediated by PDZ domains. Cell 84, 757–767
    OpenUrlCrossRefPubMedWeb of Science
    1. Brunner D.,
    2. Ocellers N.,
    3. Szabad J.,
    4. Biggs W. H.,
    5. Zipursky S. L.,
    6. Hafen H.
    (1994) A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76, 875–888
    OpenUrlCrossRefPubMedWeb of Science
    1. Buckels G. R.,
    2. Smith Z. D. J.,
    3. Katz F. N.
    (1992) mip causes hyperinnervation of a retinotopic map in Drosophila by excessive recruitment of R7 photoreceptor cells. Neuron 8, 1015–1029
    OpenUrlCrossRefPubMed
    1. Cagan R. L.,
    2. Ready D. F.
    (1989) The emergence of order in the Drosophila pupal retina. Dev. Biol 136, 346–362
    OpenUrlCrossRefPubMedWeb of Science
    1. Carthew R. W.,
    2. Rubin G. M.
    (1990) seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63, 561–577
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang H. C.,
    2. Solomon N. M.,
    3. Wasserman D. A.,
    4. Karim F. D.,
    5. Therrien M.,
    6. Rubin G. M.,
    7. Wolff T.
    (1995) phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80, 463–472
    OpenUrlCrossRefPubMedWeb of Science
    1. Dickson B. J.,
    2. Dominguez M.,
    3. van der Staten A.,
    4. Hafen E.
    (1995) Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80, 453–462
    OpenUrlCrossRefPubMedWeb of Science
    1. Dickson B.,
    2. Sprenger F.,
    3. Hafen E.
    (1992) Prepattern in the developing Drosophila eye revealed by an activated torso-sevenless chimeric receptor. Genes Dev 6, 2327–2339
    OpenUrlAbstract/FREE Full Text
    1. Dong H.,
    2. O'Brien R.,
    3. Fung E. T.,
    4. Lanahan A. A.,
    5. Worley P. F.,
    6. Hugainir R. L.
    (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284
    OpenUrlCrossRefPubMedWeb of Science
    1. Doyle H.,
    2. Bishop J. M.
    (1993) Torso, a receptor tyrosin kinase required for embryonic pattern formation, shares substrates with the Sevenless and EGF-R pathways in Drosophila. Genes Dev 7, 633–346
    OpenUrlAbstract/FREE Full Text
    1. Fortini M. E.,
    2. Rebay I.,
    3. Coron L. A.,
    4. Artavanis-Tsakonas S.
    (1993) An activated Notch receptor blocks cell-fate commitment in the develpoing Drosophila eye. Nature 365, 555–557
    OpenUrlCrossRefPubMedWeb of Science
    1. Fortini M. E.,
    2. Simon M. A.,
    3. Rubin G. M.
    (1992) Signaling by the sevenless protein tyrosine kinase is mimicked by ras1 activation. Nature 355, 559–561
    OpenUrlCrossRefPubMed
    1. Freeman M.
    (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Devel 48, 25–33
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman M.
    (1994) Misexpression of the Drosophilaargos gene, a secreted regulator of cell determination. Development 120, 2297–2304
    OpenUrlAbstract
    1. Freeman M.
    (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman M.,
    2. Klämbt C.,
    3. Goodman C. S.,
    4. Rubin G. M.
    (1992) The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell 69, 963–975
    OpenUrlCrossRefPubMedWeb of Science
    1. Gaul U.,
    2. Mardon G.,
    3. Rubin G. M.
    (1992) A putative Ras GTPase activating protein acts as a negative regulator of signaling by the sevenless receptor tyrosine kinase. Cell 68, 1007–1019
    OpenUrlCrossRefPubMedWeb of Science
    1. Gomperts S. N.
    (1996) Clustering membrane proteins: it's all coming together with the PSD-95/SAP90 protein family. Cell 84, 659–662
    OpenUrlCrossRefPubMedWeb of Science
    1. Han M.,
    2. Golden A.,
    3. Han Y.,
    4. Sternberg P. W.
    (1993) C. elegans lin-45 raf gene participates in let-60ras -stimulated vulval differentiation.Nature 363, 133–140
    OpenUrlCrossRefPubMedWeb of Science
    1. Herbst R.,
    2. Carrol P. M.,
    3. Allard J. D.,
    4. Schilling J.,
    5. Raabe T.,
    6. Simon M. A.
    (1996) Daughter of sevenless is a substrate of the phosphotyrosine phospatase Corkscrew and functions during Sevenless signaling. Cell 85, 899–909
    OpenUrlCrossRefPubMedWeb of Science
    1. Karim F. D.,
    2. Chang H. C.,
    3. Therrien M.,
    4. Wassarman D. A.,
    5. Laverty T.,
    6. Rubin G. M.
    (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329
    OpenUrlAbstract/FREE Full Text
    1. Kim E.,
    2. Cho K.,
    3. Rothschild A.,
    4. Sheng M.
    (1996) Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103–113
    OpenUrlCrossRefPubMedWeb of Science
    1. Kim E.,
    2. Niethammer M.,
    3. Rothschild A.,
    4. Jan Y. N.,
    5. Sheng M.
    (1995) Clustering of Shaker-type K+channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Kornau H.,
    2. Schenker L. T.,
    3. Kennedy M. B.,
    4. Seeburg P. H.
    (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740
    OpenUrlAbstract/FREE Full Text
    1. Kramer S.,
    2. West S. R.,
    3. Hromi Y.
    (1995) Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway. Development 121, 1361–1372
    OpenUrlAbstract
    1. Kuriyama M.,
    2. Harada N.,
    3. Kuroda S.,
    4. Yamamoto T.,
    5. Nakafuku M.,
    6. Iwamatsu A.,
    7. Yamamoto D.,
    8. Prasad R.,
    9. Croce C.,
    10. Canaani E.,
    11. et al.
    (1996) Identification of AF-6 and canoe as putative targets for ras. J. Biol. Chem 271, 607–610
    OpenUrlAbstract/FREE Full Text
    1. Peverali F. A.,
    2. Isaksson A.,
    3. Papavassiliou A. G.,
    4. Plastina P.,
    5. Staszewski L. M.,
    6. Mlodzik M.,
    7. Bohmann D.
    (1996) Phosphorylation of Drosophila Jun by the MAP kinase Rolled regulates photoreceptor differentiation. EMBO J 15, 3943–3950
    OpenUrlPubMedWeb of Science
    1. Ponting C. P.
    (1995) AF-6/CNO: Neither a kinesin nor a myosin, but a bit of both. Trends Biochem. Sci 20, 265–267
    OpenUrlCrossRefPubMedWeb of Science
    1. Ponting C. P.,
    2. Benjamin D. R.
    (1996) A novel family of Ras-binding domains. Trends Biochem. Sci 21, 422–425
    OpenUrlCrossRefPubMedWeb of Science
    1. Prasad R.,
    2. Gu Y.,
    3. Alder H.,
    4. Nakamura T.,
    5. Canaani O.,
    6. Saito H.,
    7. Huebner K.,
    8. Gale R. P.,
    9. Nowell P. C.,
    10. Kuriyama K.,
    11. et al.
    (1993) Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t (6;11) chromosome translocation. Canc. Res 53, 5624–5628
    OpenUrlAbstract/FREE Full Text
    1. Ready D. F.,
    2. Hanson T. E.,
    3. Benzer S.
    (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol 53, 217–240
    OpenUrlCrossRefPubMedWeb of Science
    1. Reiter C.,
    2. Schimansky T.,
    3. Nie Z.,
    4. Fishbach K.-F.
    (1996) Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: the role of the IrreC-rst protein. Development 122, 1931–1940
    OpenUrlAbstract
    1. Rogge R.,
    2. Cagan R.,
    3. Majumdar A.,
    4. Dularney T.,
    5. Banerjee U.
    (1992) Neuronal development in the Drosophila retina: The sextra gene defines an inhibitory component in the developmental pathway of R7 photoreceptor cells. Proc. Natl. Acad. Sci. USA 89, 5271–5275
    OpenUrlAbstract/FREE Full Text
    1. Rogge R.,
    2. Green P. J.,
    3. Urano J.,
    4. Horn-Saban S.,
    5. Mlodzik M.,
    6. Shilo B.-Z.,
    7. Hartenstein V.,
    8. Banerjee U.
    (1995) The role of yan in mediating the choice between cell division and differentiation. Development 121, 3947–3958
    OpenUrlAbstract
    1. Rubin G. M.,
    2. Spradling A. C.
    (1982) Genetic transformation with transposable element vectors. Science 218, 348–353
    OpenUrlAbstract/FREE Full Text
    1. Rutledge B. J.,
    2. Zhang K.,
    3. Bier E.,
    4. Jan Y. N.,
    5. Perrimon N.
    (1992) The Drosophilaspitz gene encodes a putative EGF-like growth factor involved in dosal-ventral axis formation and neurogenesis. Genes Dev 6, 1503–1517
    OpenUrlAbstract/FREE Full Text
    1. Sawamoto K.,
    2. Okano H.,
    3. Kobayakawa Y.,
    4. Hayashi S.,
    5. Mikoshiba K.,
    6. Tanimura T.
    (1994) The function of argos in regulating cell fate decisions during Drosophila eye and vein development. Dev. Biol 164, 267–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Schweitzer R.,
    2. Howes R.,
    3. Smith R.,
    4. Shilo B.-Z.,
    5. Freeman M.
    (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702
    OpenUrlCrossRefPubMed
    1. Sheng M.
    (1996) PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17, 575–578
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon M. A.,
    2. Bowtell D. D. L.,
    3. Dodson G. S.,
    4. Laverty T. R.,
    5. Rubin G. M.
    (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Taki T.,
    2. Hayashi Y.,
    3. Taniwaki M.,
    4. Seto M.,
    5. Ueda R.,
    6. Hanada R.,
    7. Suzukawa K.,
    8. Yokota J.,
    9. Morishita K.
    (1996) Fusion of the MLL gene with two different genes, AF-6 and AF-5, by a complex translocation involving chromosomes 5, 6, 8 and 11 in infant leukemia. Oncogene 13, 2121–2130
    OpenUrlPubMedWeb of Science
    1. Therrien M.,
    2. Chang H. C.,
    3. Solomon N. M.,
    4. Karim F. D.,
    5. Wasserman D. A.,
    6. Rubin G. M.
    (1995) KSR, a novel protein kinase required for Ras signal transduction. Cell 83, 879–888
    OpenUrlCrossRefPubMedWeb of Science
    1. Tio M.,
    2. Ma C.,
    3. Moses K.
    (1994) spitz, a Drosophila homolog of transforming growth factor-, is required in the founding photoreceptor cells of the compound eye facets. Mech. Devel 48, 13–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomlinson A.,
    2. Ready D. F.
    (1986) sevenless: a cell specific homeotic mutation of the Drosophila eye. Science 231, 400–402
    OpenUrlAbstract/FREE Full Text
    1. Van Vactor D. L.,
    2. Cagan R. L.,
    3. Krämer H.,
    4. Zipursky S. L.
    (1991) Induction in the developmental compound eye of Drosophila: multiple mechanisms restrict R7 induction to a single retinal precursor cell. Cell 67, 1145–1155
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolff T.,
    2. Ready D. F.
    (1991) Cell death in normal and rough eye mutant of Drosophila. Development 113, 825–839
    OpenUrlAbstract
    1. Woods D. F.,
    2. Bryant P. J.
    (1993) Zo1, DlgA and PSD-95/SAP90: Homologous proteins localized at septate junctions. Cell 66, 451–464
    OpenUrl
    1. Wyszynski M.,
    2. Lin J.,
    3. Rao A.,
    4. Nigh E.,
    5. Beggs A. H.,
    6. Craig A. M.,
    7. Sheng M.
    (1997) Competitive binding of-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442
    OpenUrlCrossRefPubMed
    1. Zhang X.-F.,
    2. Settleman J.,
    3. Kyriakis J. M.,
    4. Takeuchi-Suzuki E.,
    5. Elledge S. J.,
    6. Marshall M. S.,
    7. Bruder J. T.,
    8. Rapp U. R.,
    9. Avruch J.
    (1993) Normal and oncogenic p21 ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye
T. Matsuo, K. Takahashi, S. Kondo, K. Kaibuchi, D. Yamamoto
Development 1997 124: 2671-2680;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye
T. Matsuo, K. Takahashi, S. Kondo, K. Kaibuchi, D. Yamamoto
Development 1997 124: 2671-2680;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992