Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Antagonism between EGFR and Wingless signalling in the larval cuticle of Drosophila
D. Szuts, M. Freeman, M. Bienz
Development 1997 124: 3209-3219;
D. Szuts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Freeman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Bienz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Signalling by the epidermal growth factor receptor (EGFR) plays a critical role in the segmental patterning of the ventral larval cuticle in Drosophila: by expressing a dominant-negative EGFR molecule or Spitz, an activating ligand of EGFR, we show that EGFR signalling specifies the anterior denticles in each segment of the larval abdomen. We provide evidence that these denticles derive from a segmental zone of embryonic cells in which EGFR signalling activity is maximal. Within each segment, there is a competition between the denticle fate specified by EGFR signalling and the naked cuticle fate specified by Wingless signalling. The final pattern of the denticle belts is the product of this antagonism between the two signalling pathways. Finally, we show that the segmental zones of high EGFR signalling activity depend on bithorax gene function and that they account for the main difference in shape between abdominal and thoracic denticle belts.

REFERENCES

    1. Baker N.
    (1988) Embryonic and imaginal requirements for wg, a segment polarity gene. Dev. Biol 125, 96–108
    OpenUrlCrossRefPubMedWeb of Science
    1. Baker N. E.
    (1987) Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J 6, 1765–1774
    OpenUrlPubMedWeb of Science
    1. Bejsovec A.,
    2. Martinez-Arias A.
    (1991) Roles of wingless in patterning the larval epidermis of Drosophila. Development 113, 471–485
    OpenUrlAbstract
    1. Bejsovec A.,
    2. Wieschaus E.
    (1993) Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos. Development 119, 501–517
    OpenUrlAbstract
    1. Bienz M.
    (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10, 22–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Bienz M.,
    2. Tremml G.
    (1988) Domain of Ultrabithorax expression in Drosophila visceral mesoderm from autoregulation and exclusion. Nature 333, 576–578
    OpenUrlCrossRefPubMed
    1. Bier E.,
    2. Jan L. Y.,
    3. Jan Y. N.
    (1990) rhomboid, a gene required for dorsoventral axis establishement and peripheral nervous system development in Drosophila melanogaster. Genes Dev 4, 190–203
    OpenUrlAbstract/FREE Full Text
    1. Brunner D.,
    2. Ducker K.,
    3. Oellers N.,
    4. Hafen E.,
    5. Scholz H.,
    6. Klämbt C.
    (1994) The ETS domain protein Pointed-P2 is a target of MAP kinase in the Sevenless signal transduction pathway. Nature 370, 386–389
    OpenUrlCrossRefPubMedWeb of Science
    1. Brunner E.,
    2. Peter O.,
    3. Schweizer L.,
    4. Basler K.
    (1997) pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833
    OpenUrlCrossRefPubMedWeb of Science
    1. Chou T.-B.,
    2. Noll E.,
    3. Perrimon N.
    (1993) Autosomal P [ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369
    OpenUrlAbstract
    1. Clifford R.,
    2. Schupbach T.
    (1992) The torpedo (DER) receptor tyrosine kinase is required at multiple times during Drosophila embryogenesis. Development 115, 853–872
    OpenUrlAbstract/FREE Full Text
    1. Cohen S. M.
    (1996) Controlling growth of the wing: Vestigial integrates signals from the compartment boundaries. BioEssays 18, 855–858
    OpenUrlCrossRefPubMedWeb of Science
    1. DiNardo S.,
    2. Heemskerk J.,
    3. Dougan S.,
    4. O'Farrell P. H.
    (1994) The making of a maggot: patterning the Drosophila embryonic epidermis. Curr. Opin. Genet. Develop 4, 529–534
    OpenUrlCrossRefPubMed
    1. Dougan S. T.,
    2. DiNardo S.
    (1992) wingless generates cell type diversity among engrailed expressing cells. Nature 360, 347–350
    OpenUrlCrossRefPubMed
    1. Freeman M.
    (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev 48, 25–33
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman M.
    (1994) Misexpression of the Drosophila argos gene, a secreted regulator of cell determination. Development 120, 2297–2304
    OpenUrlAbstract
    1. Freeman M.
    (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman M.
    (1997) Cell determination strategies in the Drosophila eye. Development 124, 261–270
    OpenUrlAbstract
    1. Freeman M.,
    2. Kimmel B. E.,
    3. Rubin G. M.
    (1992) Identifying targets of the rough homeobox gene of Drosophila: evidence that rhomboid functions in eye development. Development 116, 335–346
    OpenUrlAbstract/FREE Full Text
    1. Freeman M.,
    2. Klämbt C.,
    3. Goodman C. S.,
    4. Rubin G. M.
    (1992) The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell 69, 963–975
    OpenUrlCrossRefPubMedWeb of Science
    1. Golembo M.,
    2. Schweitzer R.,
    3. Freeman M.,
    4. Shilo B.-Z.
    (1996) argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230
    OpenUrlAbstract
    1. Gonzales F.,
    2. Swales L. S.,
    3. Bejsovec A.,
    4. Skaer H.,
    5. Martinez-Arias A.
    (1991) Secretion and movement of wingless protein in the epidermis of the Drosophila embryo. Mech. Dev 35, 43–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Hama C.,
    2. Ali Z.,
    3. Kornberg T.
    (1990) Region-specific recombinationand expression are directed by portions of the Drosophila engrailed promoter. Genes Dev 4, 1079–1093
    OpenUrlAbstract/FREE Full Text
    1. Heberlein U.,
    2. Hariharan I. K.,
    3. Rubin G. M.
    (1993) Star is required for neuronal differentiation in the Drosophila retina and displays dosage-sensitive interactions with Ras1. Dev. Biol 160, 51–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Heemskerk J.,
    2. DiNardo S.
    (1994) Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76, 449–460
    OpenUrlCrossRefPubMedWeb of Science
    1. Hill C. S.,
    2. Treisman R.
    (1995) Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80, 199–211
    OpenUrlCrossRefPubMedWeb of Science
    1. Hoschuetzky H.,
    2. Aberle H.,
    3. Kemler R.
    (1994) -catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell Biol 127, 1375–1380
    OpenUrlAbstract/FREE Full Text
    1. Ingham P. W.
    (1993) Localized hedgehog activity controls spatial limits of wingless transcription in the Drosophila embryo. Nature 366, 560–562
    OpenUrlCrossRefPubMedWeb of Science
    1. Ingham P. W.,
    2. Hidalgo A.
    (1993) Regulation of wingless transcription in the Drosophila embryo. Development 117, 283–291
    OpenUrlAbstract/FREE Full Text
    1. Kimelman D.,
    2. Christian J. L.,
    3. Moon R. T.
    (1992) Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction. Development 116, 1–9
    OpenUrlAbstract
    1. Kolodkin A. L.,
    2. Pickup A. T.,
    3. Lin D. M.,
    4. Goodman C. S.,
    5. Banerjee U.
    (1994) Characterization of Star and its interactions with sevenless and EGF receptor during photoreceptor cell development in Drosophila. Development 120, 1731–1745
    OpenUrlAbstract
    1. Lawrence P. A.,
    2. Johnston P.
    (1989) Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu. Development 105, 761–767
    OpenUrlAbstract/FREE Full Text
    1. Lawrence P. A.,
    2. Sanson B.,
    3. Vincent J.-P.
    (1996) Compartments, wingless and engrailed: patterning the ventral epidermis of Drosophila embryos. Development 122, 4095–4103
    OpenUrlAbstract
    1. Lee T.,
    2. Feig L.,
    3. Montell D. J.
    (1996) Two distinct roles for Ras in a developmentally regulated cell migration. Development 122, 409–418
    OpenUrlAbstract
    1. Lewis E. B.
    (1978) A gene complex controlling segmentation in Drosophila. Nature 276, 565–570
    OpenUrlCrossRefPubMedWeb of Science
    1. Lohs-Schardin M.,
    2. Cremer C.,
    3. Nusslein-Volhard C.
    (1979) A fate map of the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with a UV laser microbeam. Dev. Biol 73, 239–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Martinez-Arias A.,
    2. Baker N. E.,
    3. Ingham P. W.
    (1988) Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 157–170
    OpenUrlAbstract
    1. Mayer U.,
    2. Nusslein-Volhard C.
    (1988) A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2, 1496–1511
    OpenUrlAbstract/FREE Full Text
    1. Neuman-Silberberg F.,
    2. Schupbach T.
    (1993) The Drosophila gene gurken produces a dorsally localized RNA and encodes a TGF-like protein. Cell 75, 165–174
    OpenUrlCrossRefPubMedWeb of Science
    1. Noordermeer J.,
    2. Johnston P.,
    3. Rijsewijk F.,
    4. Nusse R.,
    5. Lawrence P. A.
    (1992) The consequences of ubiquitous expression of the wingless gene in the Drosophila embryo. Development 116, 711–719
    OpenUrlAbstract
    1. Nusslein-Volhard C.,
    2. Wieschaus E.
    (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Neill E. M.,
    2. Rebay I.,
    3. Tijan R.,
    4. Rubin G. M.
    (1994) The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147
    OpenUrlCrossRefPubMedWeb of Science
    1. Patel N. H.,
    2. Martin-Blanco E.,
    3. Coleman K. G.,
    4. Poole S. J.,
    5. Ellis M. C.,
    6. Kornberg T. B.,
    7. Goodman C. S.
    (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58, 955–968
    OpenUrlCrossRefPubMedWeb of Science
    1. Peifer M.,
    2. Wieschaus E.
    (1990) The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63, 1167–1178
    OpenUrlCrossRefPubMedWeb of Science
    1. Peifer M.,
    2. Sweeton D.,
    3. Casey M.,
    4. Wieschaus E.
    (1994) wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380
    OpenUrlAbstract
    1. Perrimon N.
    (1994) The genetic basis for patterned baldness in Drosophila. Cell 76, 781–784
    OpenUrlCrossRefPubMedWeb of Science
    1. Price J. V.,
    2. Clifford R. J.,
    3. Schupbach T.
    (1989) The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 56, 1085–1092
    OpenUrlCrossRefPubMed
    1. Raz E.,
    2. Shilo B.-Z.
    (1992) Dissection of the faint little ball (flb) phenotype: determination of the development of the Drosophila central nervous system by early interactions in the ectoderm. Development 114, 113–123
    OpenUrlAbstract
    1. Riese J.,
    2. Yu X.,
    3. Munnerlyn A.,
    4. Eresh S.,
    5. Grosschedl R.,
    6. Bienz M.
    (1997) LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777–787
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruohola-Baker H.,
    2. Grell E.,
    3. Chou T. B.,
    4. Baker D.,
    5. Jan L. Y.,
    6. Jan Y. N.
    (1993) Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell 73, 953–965
    OpenUrlCrossRefPubMedWeb of Science
    1. Rutledge B. J.,
    2. Zhang K.,
    3. Bier E.,
    4. Jan Y. N.,
    5. Perrimon N.
    (1992) The Drosophilaspitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev 6, 1503–1517
    OpenUrlAbstract/FREE Full Text
    1. Sampedro J.,
    2. Johnston P.,
    3. Lawrence P. A.
    (1993) A role for wingless in the segment gradient of Drosophila?. Development 117, 677–687
    OpenUrlAbstract
    1. Sánchez-Herrero E.,
    2. Vernos R.,
    3. Marco R.,
    4. Morata G.
    (1985) Genetic organisation of Drosophila bithorax complex. Nature 313, 108–113
    OpenUrlCrossRefPubMed
    1. Sanson B.,
    2. White P.,
    3. Vincent J.-P.
    (1996) Uncoupling cadherin-dependent adhesion from Wingless signalling in Drosophila. Nature 383, 627–630
    OpenUrlCrossRefPubMed
    1. Schejter E. D.,
    2. Shilo B.-Z.
    (1989) The Drosophila EGF receptor homolog is allelic to faint little balll, a locus essential for embryonic development. Cell 56, 1093–1104
    OpenUrlCrossRefPubMedWeb of Science
    1. Schnepp B.,
    2. Grumbling G.,
    3. Donaldson T.,
    4. Simcox A.
    (1996) Vein is a novel component in the Drosophila epidermal growth factor receptor pathway with similarity to the neuregulins. Genes Dev 10, 2302–2313
    OpenUrlAbstract/FREE Full Text
    1. Schweitzer R.,
    2. Howes R.,
    3. Smith R.,
    4. Shilo B.-Z.,
    5. Freeman M.
    (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702
    OpenUrlCrossRefPubMed
    1. Schweitzer R.,
    2. Shaharabany M.,
    3. Seger R.,
    4. Shilo B.-Z.
    (1995) Secreted Spitz triggers the DER signalling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev 9, 1518–1529
    OpenUrlAbstract/FREE Full Text
    1. Siegfried E.,
    2. Chou T.-B.,
    3. Perrimon N.
    (1992) wingless signalling acts through zest-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71, 1167–1179
    OpenUrlCrossRefPubMedWeb of Science
    1. Simcox A.
    (1997) Differential requirements for EGF-like ligands in Drosophila wing development. Mech. Dev 62, 41–50
    OpenUrlCrossRefPubMed
    1. Smith J. C.
    (1993) Mesoderm-inducing factors in early vertebrate development. EMBO J 12, 4463–4470
    OpenUrlPubMedWeb of Science
    1. Sturtevant M. A.,
    2. Roark M.,
    3. Bier E.
    (1993) The Drosophilarhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signalling pathway. Genes Dev 7, 961–973
    OpenUrlAbstract/FREE Full Text
    1. Sturtevant M. A.,
    2. Roark M.,
    3. O'Neill J. W.,
    4. Biehs B.,
    5. Colley N.,
    6. Bier E.
    (1996) The Drosophila Rhomboid protein is concentrated in patches at the apical cell surface. Dev. Biol 174, 298–309
    OpenUrlCrossRefPubMedWeb of Science
    1. Thuringer F.,
    2. Cohen S. M.,
    3. Bienz M.
    (1993) Dissection of an indirect autoregulatory response of a homeotic Drosophila gene. EMBO J 12, 2419–2430
    OpenUrlPubMed
    1. van de Wetering M.,
    2. Cavallo R.,
    3. Dooijes D.,
    4. van Beest M.,
    5. van Es J.,
    6. Loureiro J.,
    7. Ypma A.,
    8. Hursh D.,
    9. Jones T.,
    10. Bejsovec A.,
    11. Peifer M.,
    12. Mortin M.,
    13. Clevers H.
    (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799
    OpenUrlCrossRefPubMedWeb of Science
    1. Watabe T.,
    2. Kim S.,
    3. Candia A.,
    4. Rothbacher U.,
    5. Hashimoto C.,
    6. Inoue K.,
    7. Cho K. W.
    (1995) Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 9, 3038–3050
    OpenUrlAbstract/FREE Full Text
    1. Zak N. B.,
    2. Wides R. J.,
    3. Schejter E. D.,
    4. Raz E.,
    5. Shilo B.-Z.
    (1990) Localization of the DER/flb protein in embryos: implication on the faint little ball lethal phenotype. Development 109, 865–874
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Antagonism between EGFR and Wingless signalling in the larval cuticle of Drosophila
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Antagonism between EGFR and Wingless signalling in the larval cuticle of Drosophila
D. Szuts, M. Freeman, M. Bienz
Development 1997 124: 3209-3219;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Antagonism between EGFR and Wingless signalling in the larval cuticle of Drosophila
D. Szuts, M. Freeman, M. Bienz
Development 1997 124: 3209-3219;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • even skipped is required to produce a trans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone
  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992