Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Cell determination strategies in the Drosophila eye
M. Freeman
Development 1997 124: 261-270;
M. Freeman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Cells in the Drosophila eye are determined by inductive signalling. Here I describe a new model of eye development that explains how simple intercellular signals could specify the diverse cell types that constitute the ommatidium. This model arises from the recent observation that the Drosophila homologue of the EGF receptor (DER) is used reiteratively to trigger the differentiation of each of the cell types--successive rounds of DER activation recruit first the photoreceptors, then cone and finally pigment cells. It seems that a cell's identity is not determined by the specific signal that induces it, but is instead a function of the state of the cell when it receives the signal. DER signalling is activated by the ligand, Spitz, and inhibited by the secreted protein, Argos. Spitz is initially produced by the central cells in the ommatidium and diffuses over a small distance. Argos has a longer range, allowing it to block more distal cells from being activated by low levels of Spitz; I have termed this interplay between a short-range activator and a long-range inhibitor ‘remote inhibition’. Since inductive signalling is common in many organisms and its components have been conserved, it is possible that the logic of signalling may also be conserved.

REFERENCES

    1. Baker N. E.,
    2. Rubin G. M.
    (1989) Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature 340, 150–153
    OpenUrlCrossRefPubMed
    1. Baker N. E.,
    2. Zitron A. E.
    (1995) Drosophila eye development: Notch and Delta amplify a neurogenic pattern conferred on the morphogenetic furrow by scabrous. Mech. Dev 49, 173–189
    OpenUrlCrossRefPubMedWeb of Science
    1. Banerjee U.,
    2. Renfranz P. J.,
    3. Hinton D. R.,
    4. Rabin B. A.,
    5. Benzer S.
    (1987) The sevenless+ protein is expressed apically in cell membranes of developing Drosophila retina; it is not restricted to cell R7. Cell 51, 151–158
    OpenUrlCrossRefPubMedWeb of Science
    1. Basler K.,
    2. Christen B.,
    3. Hafen E.
    (1991) Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell 64, 1069–1081
    OpenUrlCrossRefPubMedWeb of Science
    1. Basler K.,
    2. Hafen E.
    (1989) Ubiquitous expression of sevenless: position-dependent specification of cell fate. Science 243, 931–934
    OpenUrlAbstract/FREE Full Text
    1. Basler K.,
    2. Yen D.,
    3. Tomlinson A.,
    4. Hafen E.
    (1990) Reprogramming cell fate in the developing Drosophila retina: transformation of R7 cells by ectopic expression of rough. Genes Dev 4, 728–739
    OpenUrlAbstract/FREE Full Text
    1. Bonini N. M.,
    2. Choi K. W.
    (1995) Early decisions in Drosophila eye morphogenesis. Current Opinion in Genetics and Development 5, 507–515
    OpenUrlCrossRefPubMedWeb of Science
    1. Bowtell D. D.,
    2. Simon M. A.,
    3. Rubin G. M.
    (1989) Ommatidia in the developing Drosophila eye require and can respond to sevenless for only a restricted period. Cell 56, 931–936
    OpenUrlCrossRefPubMedWeb of Science
    1. Brunner D.,
    2. Ducker K.,
    3. Oellers N.,
    4. Hafen E.,
    5. Scholz H.,
    6. Klämbt C.
    (1994) The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370, 386–389
    OpenUrlCrossRefPubMedWeb of Science
    1. Cagan R. L.,
    2. Ready D. F.
    (1989) The emergence of order in the Drosophila pupal retina. Dev. Biol 136, 346–362
    OpenUrlCrossRefPubMedWeb of Science
    1. Cagan R. L.,
    2. Ready D. F.
    (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3, 1099–1112
    OpenUrlAbstract/FREE Full Text
    1. Carthew R. W.,
    2. Rubin G. M.
    (1990) seven in absentia, a gene required for specification of cell fate in the Drosophila eye. Cell 63, 561–577
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang H. C.,
    2. Solomon N. M.,
    3. Wassarman D. A.,
    4. Karim F. D.,
    5. Therrien M.,
    6. Rubin G. M.,
    7. Wolff T.
    (1995) phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80, 463–472
    OpenUrlCrossRefPubMedWeb of Science
    1. Clifford R.,
    2. Schupbach T.
    (1992) The torpedo (DER) receptor tyrosine kinase is required at multiple times during Drosophila embryogenesis. Development 115, 853–872
    OpenUrlAbstract/FREE Full Text
    1. Daga A.,
    2. Karlovich C. A.,
    3. Dumstrei K.,
    4. Banerjee U.
    (1996) Patterning of cells in the Drosophila eye by lozenge, which shares homologous domains with AML1. Genes Dev 10, 1194–1205
    OpenUrlAbstract/FREE Full Text
    1. Davidson E. H.
    (1991) Spatial mechanisms of gene regulation in metazoan embryos. Development 113, 1–26
    OpenUrlAbstract
    1. Diaz-Benjumea F. J.,
    2. Hafen E.
    (1994) The sevenless signaling cassette mediates Drosophila EGF receptor function during epidermal development. Development 120, 569–578
    OpenUrlAbstract
    1. Dickson B.
    (1995) Nuclear factors in sevenless signalling. Trends in Genetics 11, 106–111
    OpenUrlCrossRefPubMedWeb of Science
    1. Dickson B.,
    2. Hafen E.
    (1994) Genetics of signal transduction in invertebrates. Current Opinion in Genetics Dev 4, 64–70
    OpenUrlCrossRefPubMed
    1. Dickson B.,
    2. Sprenger F.,
    3. Hafen E.
    (1992) Prepattern in the developing Drosophila eye revealed by an activated torso-sevenless chimeric receptor. Genes Dev 6, 2327–2339
    OpenUrlAbstract/FREE Full Text
    1. Dickson B. J.,
    2. Dominguez M.,
    3. Van der Straten A.,
    4. Hafen E.
    (1995) Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80, 453–462
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferguson E. L.
    (1996) Conservation of dorsal ventral patterning in arthropods and chordates. Current Opinion in Genetics and Dev 6, 424–431
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferguson E. L.,
    2. Anderson K. V.
    (1992) Decapentaplegic Acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71, 451–461
    OpenUrlCrossRefPubMedWeb of Science
    1. Fischer-Vize J. A.,
    2. Rubin G. M.,
    3. Lehmann R.
    (1992) The fat facets gene is required for Drosophila eye and embryo development. Development 116, 985–1000
    OpenUrlAbstract/FREE Full Text
    1. Fortini M. E.,
    2. Rebay I.,
    3. Caron L. A.,
    4. ArtavanisTsakonas S.
    (1993) An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365, 555–557
    OpenUrlCrossRefPubMedWeb of Science
    1. Fortini M. E.,
    2. Simon M. A.,
    3. Rubin G. M.
    (1992) Signalling by the sevenless protein tyrosine kinase is mimicked by Ras1 activation. Nature 355, 559–561
    OpenUrlCrossRefPubMed
    1. Freeman M.
    (1994) Misexpression of the Drosophila argos gene, a secreted regulator of cell determination. Development 120, 2297–2304
    OpenUrlAbstract
    1. Freeman M.
    (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev 48, 25–33
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman M.
    (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Freeman M.,
    2. Kimmel B. E.,
    3. Rubin G. M.
    (1992) Identifying targets of the rough homeobox gene of Drosophila: Evidence that rhomboid functions in eye development. Development 116, 335–346
    OpenUrlAbstract/FREE Full Text
    1. Freeman M.,
    2. Klämbt C.,
    3. Goodman C. S.,
    4. Rubin G. M.
    (1992) The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell 69, 963–975
    OpenUrlCrossRefPubMedWeb of Science
    1. Gaul U.,
    2. Mardon G.,
    3. Rubin G. M.
    (1992) A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68, 1007–1019
    OpenUrlCrossRefPubMedWeb of Science
    1. Golembo M.,
    2. Raz E.,
    3. Shilo B.-Z.
    (1996) The Drosophila embryonicmidline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122, 3363–3370
    OpenUrlAbstract
    1. Golembo M.,
    2. Schweitzer R.,
    3. Freeman M.,
    4. Shilo B.-Z.
    (1996) argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230
    OpenUrlAbstract
    1. Golic K. G.,
    2. Lindquist S.
    (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509
    OpenUrlCrossRefPubMedWeb of Science
    1. Graff J. M.,
    2. Thies R. S.,
    3. Song J. J.,
    4. Celeste A. J.,
    5. Melton D. A.
    (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179
    OpenUrlCrossRefPubMedWeb of Science
    1. Gurdon J. B.
    (1992) The generation of diversity and pattern in animal development. Cell 68, 185–199
    OpenUrlCrossRefPubMedWeb of Science
    1. Hafen E.,
    2. Basler K.,
    3. Edstroem J. E.,
    4. Rubin G. M.
    (1987) Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236, 55–63
    OpenUrlAbstract/FREE Full Text
    1. Harris W. A.,
    2. Stark W. S.,
    3. Walker J. A.
    (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol 256, 415–439
    OpenUrl
    1. Hart A. C.,
    2. Kramer H.,
    3. Van Vactor Dl, Jr.,
    4. Paidhungat M.,
    5. Zipursky S. L.
    (1990) Induction of cell fate in the Drosophila retina: The bride of sevenless protein is predicted to contain a large extracellular domain and seven transmembrane segments. Genes Dev 4, 1835–1847
    OpenUrlAbstract/FREE Full Text
    1. Heberlein U.,
    2. Hariharan I. K.,
    3. Rubin G. M.
    (1993) Star is required for neuronal differentiation in the Drosophila retina and displays dosage-sensitive interactions with Ras1. Dev. Biol 160, 51–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Heberlein U.,
    2. Mlodzik M.,
    3. Rubin G. M.
    (1991) Cell-fate determination in the developing Drosophila eye: role of the rough gene. Development 112, 703–712
    OpenUrlAbstract
    1. Heberlein U.,
    2. Moses K.
    (1995) Mechanisms of Drosophila retinal morphogenesis: The virtues of being progressive. Cell 81, 987–990
    OpenUrlCrossRefPubMedWeb of Science
    1. Heberlein U.,
    2. Rubin G. M.
    (1991) Star is required in a subset of photoreceptor cells in the developing Drosophila retina and displays dosage sensitive interactions with rough. Dev. Biol 144, 353–361
    OpenUrlCrossRefPubMedWeb of Science
    1. Higashijima S. I.,
    2. Kojima T.,
    3. Michiue T.,
    4. Ishimaru S.,
    5. Emori Y.,
    6. Saigo K.
    (1992) Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev 6, 50–60
    OpenUrlAbstract/FREE Full Text
    1. Hiromi Y.,
    2. Miodzik M.,
    3. West S. R.,
    4. Rubin G. M.,
    5. Goodman C. S.
    (1993) Ectopic expression of seven-up causes cell fate changes during ommatidial assembly. Development 118, 1123–1135
    OpenUrlAbstract/FREE Full Text
    1. Huang Y.,
    2. Baker R. T.,
    3. Fischer-Vize J. A.
    (1995) Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science 270, 1828–1831
    OpenUrlAbstract/FREE Full Text
    1. Huang Y.,
    2. Fischer-Vize J. A.
    (1996) Undifferentiated cells in the developing Drosophila eye influence facet assembly and require the Fat facets ubiquitin-specific protease. Development 122, 3207–3216
    OpenUrlAbstract
    1. Jarman A. P.,
    2. Grell E. H.,
    3. Ackerman L.,
    4. Jan L. Y.,
    5. Jan Y. N.
    (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400
    OpenUrlCrossRefPubMed
    1. Jarman A. P.,
    2. Sun Y.,
    3. Jan L. Y.,
    4. Jan Y. N.
    (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121, 2019–2030
    OpenUrlAbstract
    1. Kauffman R. C.,
    2. Li S.,
    3. Gallagher P. A.,
    4. Zhang J.,
    5. Carthew R. W.
    (1996) Ras1 signaling and transcriptional competence in the R7 cell of Drosophila. Genes Dev 10, 2167–2178
    OpenUrlAbstract/FREE Full Text
    1. Kimmel B. E.,
    2. Heberlein U.,
    3. Rubin G. M.
    (1990) The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev 4, 712–727
    OpenUrlAbstract/FREE Full Text
    1. Kolodkin A. L.,
    2. Pickup A. T.,
    3. Lin D. M.,
    4. Goodman C. S.,
    5. Banerjee U.
    (1994) Characterization of Star and its interactions with sevenless and EGF receptor during photoreceptor cell development in Drosophila. Development 120, 1731–1745
    OpenUrlAbstract
    1. Kopczynski C. C.,
    2. Alton A. K.,
    3. Fechtel K.,
    4. Kooh P. J.,
    5. Muscavitch M. A. T.
    (1988) Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev 2, 1723–1735
    OpenUrlAbstract/FREE Full Text
    1. Krämer H.,
    2. Cagan R. L.
    (1994) Determination of photoreceptor cell fate in the Drosophila retina. Curr. Opin. Neurobiol 4, 14–20
    OpenUrlCrossRefPubMed
    1. Kramer S.,
    2. West S. R.,
    3. Hiromi Y.
    (1995) Cell fate control in the Drosophila retina by the orphan receptor seven-up: Its role in the decisions mediated by the ras signaling pathway. Development 121, 1361–1372
    OpenUrlAbstract
    1. Kretzschmar D.,
    2. Brunner A.,
    3. Wiersdorff V.,
    4. Pflugfelder G. O.,
    5. Heisenberg M.,
    6. Schneuwly S.
    (1992) Giant lens, a gene involved incell determination and axon guidance in the visual system of Drosophila melanogaster. EMBO J 11, 2531–2539
    OpenUrlPubMedWeb of Science
    1. Kunes S.,
    2. Steller H.
    (1993) Topography in the Drosophila visual system. Current Opinion in Neurobiology 3, 53–59
    OpenUrlCrossRefPubMed
    1. Lawrence P. A.,
    2. Green S. M.
    (1979) Cell lineage in the developing retina of Drosophila. Dev. Biol 71, 142–152
    OpenUrlCrossRefPubMedWeb of Science
    1. Leibovitz R. M.,
    2. Ready D. F.
    (1986) Ommatidial development in Drosophila eye disc fragments. Dev. Biol 117, 663–671
    OpenUrlCrossRefPubMedWeb of Science
    1. Marshall C. J.
    (1995) Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon A. P.
    (1993) Cell signalling in induction and anterior-posterior patterning of the vertebrate central nervous system. Current Opinion in Neurobiol 3, 4–7
    OpenUrlCrossRefPubMed
    1. Mlodzik M.,
    2. Hiromi Y.,
    3. Goodman C. S.,
    4. Rubin G. M.
    (1992) The presumptive R7 cell of the developing Drosophila eye receives positional information independent of sevenless, boss and sina. Mech. Dev 37, 37–42
    OpenUrlCrossRefPubMed
    1. Mlodzik M.,
    2. Hiromi Y.,
    3. Weber U.,
    4. Goodman C. S.,
    5. Rubin G. M.
    (1990) The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60, 211–224
    OpenUrlCrossRefPubMedWeb of Science
    1. Neuman-Silberberg F. S.,
    2. Schupbach T.
    (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF-like protein. Cell 75, 165–174
    OpenUrlCrossRefPubMedWeb of Science
    1. Okano H.,
    2. Hayashi S.,
    3. Tanimura T.,
    4. Sawamoto K.
    (1992) Regulation of Drosophila neural development by a putative secreted protein. Differentiation 52, 1–11
    OpenUrlCrossRefPubMed
    1. Parks A. L.,
    2. Turner F. R.,
    3. Muskavitch M. A. T.
    (1995) Relationships between complex Delta expression and the specification of retinal cell fates during Drosophila eye development. Mech. Dev 50, 201–216
    OpenUrlCrossRefPubMedWeb of Science
    1. Piccolo S.,
    2. Sasai Y.,
    3. Lu B.,
    4. De Robertis E. M.
    (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598
    OpenUrlCrossRefPubMedWeb of Science
    1. Qiu M. S.,
    2. Green S. H.
    (1992) PC12 cell neuronal differentiation is associated with prolonged p21(ras) activity and consequent prolonged ERK activity. Neuron 9, 705–717
    OpenUrlCrossRefPubMedWeb of Science
    1. Raz E.,
    2. Shilo B. Z.
    (1992) Dissection of the faint little ball (flb) phenotype: determination of the development of the Drosophila central nervous system by early interactions in the ectoderm. Development 114, 113–123
    OpenUrlAbstract
    1. Ready D. F.,
    2. Hanson T. E.,
    3. Benzer S.
    (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol 53, 217–240
    OpenUrlCrossRefPubMedWeb of Science
    1. Reh T. A.,
    2. Cagan R. L.
    (1994) Intrinsic and extrinsic signals in the developing vertebrate and fly eye: viewing vertebrate and invertebrate eyes in the same light. Perspect. Dev. Neurobiol 2, 183–190
    OpenUrlPubMedWeb of Science
    1. Reinke R.,
    2. Zipursky S. L.
    (1988) Cell-cell interaction in the Drosophila retina: the bride-of-sevenless gene is required in photoreceptor R8 for R7 cell development. Cell 55, 321–330
    OpenUrlCrossRefPubMedWeb of Science
    1. Rogge R.,
    2. Cagan R.,
    3. Majumdar A.,
    4. Dulaney T.,
    5. Banerjee U.
    (1992) Neuronal development in the Drosophila retina: The sextra gene defines an inhibitory component in the developmental pathway of R7 photoreceptor cells. Proc. Natl. Acad. Sci. USA 89, 5271–5275
    OpenUrlAbstract/FREE Full Text
    1. Rutledge B. J.,
    2. Zhang K.,
    3. Bier E.,
    4. Yuh N. J.,
    5. Perrimon N.
    (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev 6, 1503–1517
    OpenUrlAbstract/FREE Full Text
    1. Schmidt J. E.,
    2. Suzuki A.,
    3. Ueno N.,
    4. Kimelman D.
    (1995) Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev. Biol 169, 37–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Schnepp B.,
    2. Grumbling G.,
    3. Donaldson T.,
    4. Simcox A.
    (1996) Vein is a novel component in the Drosophila epidermal growth factor receptor pathway with similarity to the neuregulins. Genes Dev 10, 2302–2313
    OpenUrlAbstract/FREE Full Text
    1. Schweitzer R.,
    2. Howes R.,
    3. Smith R.,
    4. Shilo B.-Z.,
    5. Freeman M.
    (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702
    OpenUrlCrossRefPubMed
    1. Schweitzer R.,
    2. Shaharabany M.,
    3. Seger R.,
    4. Shilo B.
    (1995) Secreted Spitz triggers the DER signalling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev 9, 1518–1529
    OpenUrlAbstract/FREE Full Text
    1. Shah N. M.,
    2. Groves A. K.,
    3. Anderson D. J.
    (1996) Alternative neural crest cell fates are instructively promoted by TGFsuperfamily members. Cell 85, 331–343
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon M. A.
    (1994) Signal transduction during the development of the Drosophila R7 photoreceptor. Dev. Biol 166, 431–442
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon M. A.,
    2. Bowtell D. D.,
    3. Dodson G. S.,
    4. Laverty T. R.,
    5. Rubin G. M.
    (1991) Ras1 and a putative guanine nucleotide exchange factor performcrucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Simpson P.
    (1990) Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109, 509–519
    OpenUrlAbstract
    1. Sulston J. E.,
    2. White J. G.
    (1980) Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev. Biol 78, 577–597
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki A.,
    2. Thies R. S.,
    3. Yamaji N.,
    4. Song J. J.,
    5. Wozney J. M.,
    6. Murakami K.,
    7. Ueno N.
    (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91, 10255–10259
    OpenUrlAbstract/FREE Full Text
    1. Tio M.,
    2. Ma C.,
    3. Moses K.
    (1994) Spitz, a Drosophila homolog of transforming growth factor-alpha, is required in the founding photoreceptor cells of the compound eye facets. Mech. Dev 48, 13–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Tio M.,
    2. Moses K. M.
    (1997) The Drosophila TGFαhomolog Spitz acts in photoreceptor recruitment in the developing retina. Development In press
    1. Tomlinson A.
    (1985). The cellular dynamics of pattern formation in the eye of Drosophila. J. Embryol. Exp. Morph 89, 313–331
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomlinson A.,
    2. Bowtell D. D.,
    3. Hafen E.,
    4. Rubin G. M.
    (1987) Localization of the sevenless protein, a putative receptor for positional information, in the eye imaginal disc of Drosophila. Cell 51, 143–150
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomlinson A.,
    2. Kimmel B. E.,
    3. Rubin G. M.
    (1988) rough, a Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interactions in the developing eye. Cell 55, 771–784
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomlinson A.,
    2. Ready D. F.
    (1987) Cell fate in the Drosophila ommatidium. Dev. Biol 123, 264–275
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomlinson A.,
    2. Ready D. F.
    (1987) Neuronal differentiation in the Drosophila ommatidium. Dev. Biol 120, 366–376
    1. Traverse S.,
    2. Gomez N.,
    3. Paterson H.,
    4. Marshall C.,
    5. Cohen P.
    (1992) Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J 288, 351–355
    OpenUrlCrossRefWeb of Science
    1. van der Geer P.,
    2. Hunter T.,
    3. Lindberg R. A.
    (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Ann. Rev. Cell Biol 10, 251–337
    OpenUrlCrossRefPubMedWeb of Science
    1. van Vactor D. L.,
    2. Cagan R. L.,
    3. Kramer H.,
    4. Zipursky S. L.
    (1991) Induction in the developing compound eye of Drosophila: Multiple mechanisms restrict R7 induction to a single retinal precursor cell. Cell 67, 1145–1155
    OpenUrl
    1. Vässin H.,
    2. Bremer K. A.,
    3. Knust E.,
    4. Campos-Ortega J. A.
    (1987) The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J 6, 3433–3440
    OpenUrlAbstract
    1. Wharton K. A.,
    2. Ray R. P.,
    3. Gelbart W. M.
    (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822
    OpenUrlAbstract
    1. Wolff T.,
    2. Ready D. F.
    (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113, 841–850
    OpenUrlAbstract
    1. Wolff T.,
    2. Ready D. F.
    (1991) Cell death in normal and rough eye mutants of Drosophila. Development 113, 825–839
    OpenUrlAbstract
    1. Xu T.,
    2. Rubin G. M.
    (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237
    OpenUrlCrossRefPubMedWeb of Science
    1. Zimmerman L. B.,
    2. De Jesus-Escobar J. M.,
    3. Harland R. M.
    (1996) The Spemann Organiser signal noggin binds and inactivates bone morphogentic protein 4. Cell 86, 599–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Zipursky S. L.,
    2. Rubin G. M.
    (1994) Determination of neuronal cell fate: Lessons from the R7 neuron of Drosophila. Ann. Rev. Neurosci 17, 373–397
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cell determination strategies in the Drosophila eye
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Cell determination strategies in the Drosophila eye
M. Freeman
Development 1997 124: 261-270;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Cell determination strategies in the Drosophila eye
M. Freeman
Development 1997 124: 261-270;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992