Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE)
V. Dupe, M. Davenne, J. Brocard, P. Dolle, M. Mark, A. Dierich, P. Chambon, F.M. Rijli
Development 1997 124: 399-410;
V. Dupe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Davenne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brocard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Dolle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Mark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Dierich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Chambon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.M. Rijli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Retinoids are essential for normal development and both deficiency and excess of retinoic acid (RA) are teratogenic. Retinoic acid response elements (RAREs) have been identified in Hox gene promoters suggesting that endogenous retinoids may be involved in the direct control of Hox gene patterning functions. In order to test this hypothesis, we have mutated the Hoxa-1 3′RARE using the Cre-loxP targeting strategy, and studied its functional role during mouse development. We find that this enhancer plays an important role in the early establishment of the Hoxa-1 anterior expression boundary in the neural plate. This early disturbance in Hoxa-1 activation results in rhombomere and cranial nerve abnormalities reminiscent of those obtained in the Hoxa-1 total knockout, although their severity and penetrance are lower, thus providing strong evidence for direct control of Hox gene function by retinoids during normal development. Interestingly, we also find that the Hoxa-1 expression response to RA treatment is not entirely controlled by the RARE, suggesting the existence of other retinoid-induced factors mediating the Hoxa-1 response to RA and/or the presence of additional RAREs. Interestingly, although the RARE is not required for the spatiotemporal control of colinear expression of the Hoxa genes, it is absolutely required for correct Hoxa-2 expression in rhombomere 5.

REFERENCES

    1. Ang S. L.,
    2. Conlon R. A.,
    3. Jin O.,
    4. Rossant J.
    (1994) Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989
    OpenUrlAbstract
    1. Baron A.,
    2. Featherstone M. S.,
    3. Hill R. E.,
    4. Hall A.,
    5. Galliot B.,
    6. Duboule D.
    (1987) Hox-1. 6: a mouse homeo-box-containing gene member of the Hox-1 complex. EMBO J 6, 2977–2986
    OpenUrlPubMedWeb of Science
    1. Birgbauer E.,
    2. Fraser S. E.
    (1994) Violation of cell lineage restriction compartments in the chick hindbrain. Development 120, 1347–1356
    OpenUrlAbstract
    1. Birgbauer E.,
    2. Sechrist J.,
    3. Bronner-Fraser M.,
    4. Fraser S.
    (1995) Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development 121, 935–945
    OpenUrlAbstract
    1. Boshart M.,
    2. Weber F.,
    3. Jahn G.,
    4. Dorsch-Hasler K.,
    5. Fleckenstein B.,
    6. Schaffner W.
    (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530
    OpenUrlCrossRefPubMedWeb of Science
    1. Carpenter E. M.,
    2. Goddard J. M.,
    3. Chisaka O.,
    4. Manley N. R.,
    5. Capecchi M. R.
    (1993) Loss of Hox-A1 (Hox-1. 6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075
    OpenUrlAbstract/FREE Full Text
    1. Chazaud C.,
    2. Oulad-Abdelghani M.,
    3. Bouillet P.,
    4. Decimo D.,
    5. Chambon P.,
    6. Dolle P.
    (1996) AP2-2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech. Dev 54, 83–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen Y.,
    2. Huang L.,
    3. Russo A. F.,
    4. Solursh M.
    (1992) Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo. Proc. Natl. Acad. Sci. USA 89, 10056–10059
    OpenUrlAbstract/FREE Full Text
    1. Chen Y.,
    2. Huang L.,
    3. Solursh M.
    (1994) A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev. Biol 161, 70–76
    OpenUrlCrossRefPubMedWeb of Science
    1. Chisaka O.,
    2. Capecchi M. R.
    (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1. 5. Nature 350, 473–479
    OpenUrlCrossRefPubMed
    1. Chisaka O.,
    2. Musci T. S.,
    3. Capecchi M. R.
    (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1. 6. Nature 355, 516–520
    OpenUrlCrossRefPubMed
    1. Clarke J. D.,
    2. Lumsden A.
    (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118, 151–162
    OpenUrlAbstract
    1. Conlon R. A.,
    2. Rossant J.
    (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–368
    OpenUrlAbstract/FREE Full Text
    1. Conlon R. A.
    (1995) Retinoic acid and pattern formation in vertebrates. Trends Genet 11, 314–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Dekker E. J.,
    2. Pannese M.,
    3. Houtzager E.,
    4. Boncinelli E.,
    5. Durston A.
    (1993) Colinearity in the Xenopus laevis Hox-2 complex. Mech. Dev 40, 3–12
    OpenUrlCrossRefPubMedWeb of Science
    1. Deschamps J.,
    2. Wijgerde M.
    (1993) Two phases in the establishment of HOX expression domains. Dev. Biol 156, 473–480
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolle P.,
    2. Lufkin T.,
    3. Krumlauf R.,
    4. Mark M.,
    5. Duboule D.,
    6. Chambon P.
    (1993) Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1. 6) mutant embryos. Proc. Natl. Acad. Sci. USA 90, 7666–7670
    OpenUrlAbstract/FREE Full Text
    1. Duboule D.,
    2. Dolle P.
    (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8, 1497–1505
    OpenUrlPubMedWeb of Science
    1. Fraser S.,
    2. Keynes R.,
    3. Lumsden A.
    (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435
    OpenUrlCrossRefPubMed
    1. Frohman M. A.,
    2. Boyle M.,
    3. Martin G. R.
    (1990) Isolation of the mouse Hox-2. 9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607
    OpenUrlAbstract/FREE Full Text
    1. Gaunt S. J.,
    2. Strachan L.
    (1994) Forward spreading in the establishment of a vertebrate Hox expression boundary: the expression domain separates into anterior and posterior zones, and the spread occurs across implanted glass barriers. Dev. Dyn 199, 229–240
    OpenUrlPubMedWeb of Science
    1. Gendron-Maguire M.,
    2. Mallo M.,
    3. Zhang M.,
    4. Gridley T.
    (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331
    OpenUrlCrossRefPubMedWeb of Science
    1. Graham A.,
    2. Papalopulu N.,
    3. Krumlauf R.
    (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57, 367–378
    OpenUrlCrossRefPubMedWeb of Science
    1. Grapin-Botton A.,
    2. Bonnin M. A.,
    3. McNaughton L. A.,
    4. Krumlauf R.,
    5. Le Douarin N. M.
    (1995) Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121, 2707–2721
    OpenUrlAbstract
    1. Gu H.,
    2. Zou Y. R.,
    3. Rajewsky K.
    (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164
    OpenUrlCrossRefPubMedWeb of Science
    1. Hogan B. L.,
    2. Thaller C.,
    3. Eichele G.
    (1992) Evidence that Hensen's node is a site of retinoic acid synthesis. Nature 359, 237–241
    OpenUrlCrossRefPubMed
    1. Hunt P.,
    2. Gulisano M.,
    3. Cook M.,
    4. Sham M. H.,
    5. Faiella A.,
    6. Wilkinson D.,
    7. Boncinelli E.,
    8. Krumlauf R.
    (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353, 861–864
    OpenUrlCrossRefPubMed
    1. Irving C.,
    2. Nieto M. A.,
    3. Das Gupta R.,
    4. Charnay P.,
    5. Wilkinson D. G.
    (1996) Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev. Biol 173, 26–38
    OpenUrlCrossRefPubMedWeb of Science
    1. Itasaki N.,
    2. Sharpe J.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Reprogramming Hox Expression in the Vertebrate Hindbrain: Influence of Paraxial Mesoderm and Rhombomere Transposition. Neuron 16, 487–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Kastner P.,
    2. Mark M.,
    3. Chambon P.
    (1995) Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life?. Cell 83, 859–869
    OpenUrlCrossRefPubMedWeb of Science
    1. Kessel M.
    (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10, 379–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Krumlauf R.
    (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet 9, 106–112
    OpenUrlCrossRefPubMedWeb of Science
    1. Krumlauf R.
    (1994) Hox genes in vertebrate development. Cell 78, 191–201
    OpenUrlCrossRefPubMedWeb of Science
    1. Langston A. W.,
    2. Gudas L. J.
    (1992) Identification of a retinoic acid responsive enhancer 3of the murine homeobox gene Hox-1. 6. Mech. Dev 38, 217–227
    OpenUrlCrossRefPubMedWeb of Science
    1. Langston A. W.,
    2. Gudas L. J.
    (1994) Retinoic acid and homeobox gene regulation. Curr. Opin. Genet. Dev 4, 550–555
    OpenUrlCrossRefPubMed
    1. Lewis E. B.
    (1978) A gene complex controlling segmentation in Drosophila. Nature 276, 565–570
    OpenUrlCrossRefPubMed
    1. Lohnes D.,
    2. Kastner P.,
    3. Dierich A.,
    4. Mark M.,
    5. LeMeur M.,
    6. Chambon P.
    (1993) Function of retinoic acid receptor gamma in the mouse. Cell 73, 643–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Lohnes D.,
    2. Mark M.,
    3. Mendelsohn C.,
    4. Dolle P.,
    5. Dierich A.,
    6. Gorry P.,
    7. Gansmuller A.,
    8. Chambon P.
    (1994) Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–2748
    OpenUrlAbstract
    1. Lufkin T.,
    2. Dierich A.,
    3. Le Meur M.,
    4. Mark M.,
    5. Chambon P.
    (1991) Disruption of the Hox-1. 6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    OpenUrlAbstract
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J. L.,
    4. Ruberte E.,
    5. Olivo J. C.,
    6. Gorry P.,
    7. Lumsden A.,
    8. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360, 737–741
    OpenUrlCrossRefPubMed
    1. Marshall H.,
    2. Studer M.,
    3. Popperl H.,
    4. Aparicio S.,
    5. Kuroiwa A.,
    6. Brenner S.,
    7. Krumlauf R.
    (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571
    OpenUrlCrossRefPubMed
    1. Metzger D.,
    2. Clifford J.,
    3. Chiba H.,
    4. Chambon P.
    (1995) Conditional site-specific recombinaison in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995
    OpenUrlAbstract/FREE Full Text
    1. Mitchell P. J.,
    2. Timmons P. M.,
    3. Hebert J. M.,
    4. Rigby P. W.,
    5. Tjian R.
    (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes. Dev 5, 105–119
    OpenUrlAbstract/FREE Full Text
    1. Morrison A.,
    2. Moroni C. M.,
    3. Ariza-McNaughton L.,
    4. Krumlauf R.,
    5. Mavilio F.
    (1996) In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development 122, 1895–1907
    OpenUrlAbstract
    1. Morriss-Kay G. M.,
    2. Murphy P.,
    3. Hill R. E.,
    4. Davidson D. R.
    (1991) Effects of retinoic acid excess on expression of Hox-2. 9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 10, 2985–2995
    OpenUrlPubMedWeb of Science
    1. Murphy P.,
    2. Hill R. E.
    (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2. 9 and Hox 1. 6, during segmentation of the hindbrain. Development 111, 61–74
    OpenUrlAbstract
    1. Nonchev S.,
    2. Vesque C.,
    3. Maconochie M.,
    4. Seitanidou T.,
    5. Aiza-McNaughton L.,
    6. Frain M.,
    7. Marshall H.,
    8. Har Sham M.,
    9. Krumlauf R.,
    10. Charnay P.
    (1996) Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122, 543–554
    OpenUrlAbstract
    1. Popperl H.,
    2. Featherstone M. S.
    (1993) Identification of a retinoic acid response element upstream of the murine Hox-4. 2 gene. Mol. Cell Biol 13, 257–265
    OpenUrlAbstract/FREE Full Text
    1. Prince V.,
    2. Lumsden A.
    (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–923
    OpenUrlAbstract
    1. Rijli F. M.,
    2. Mark M.,
    3. Lakkaraju S.,
    4. Dierich A.,
    5. Dolle P.,
    6. Chambon P.
    (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75, 1333–1349
    OpenUrlCrossRefPubMedWeb of Science
    1. Schorle H.,
    2. Meier P.,
    3. Buchert M.,
    4. Jaenisch R.,
    5. Mitchell P. J.
    (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Acampora D.,
    3. Arcioni L.,
    4. Andrews P. W.,
    5. Boncinelli E.,
    6. Mavilio F.
    (1990) Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346, 763–766
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Acampora D.,
    3. Nigro V.,
    4. Faiella A.,
    5. D'Esposito M.,
    6. Stornaiuolo A.,
    7. Mavilio F.,
    8. Boncinelli E.
    (1991) Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech. Dev 33, 215–227
    OpenUrlCrossRefPubMedWeb of Science
    1. Simeone A.,
    2. Acampora D.,
    3. Mallamaci A.,
    4. Stornaiuolo A.,
    5. D'Apice M. R.,
    6. Nigro V.,
    7. Boncinelli E.
    (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcatesanterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12, 2735–2747
    OpenUrlPubMedWeb of Science
    1. Studer M.,
    2. Popperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Sundin O.,
    2. Eichele G.
    (1992) An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114, 841–852
    OpenUrlAbstract
    1. Sundin O. H.,
    2. Busse H. G.,
    3. Rogers M. B.,
    4. Gudas L. J.,
    5. Eichele G.
    (1990) Region-specific expression in early chick and mouse embryos of Ghox-lab and Hox 1. 6, vertebrate homeobox-containing genes related to Drosophila labial. Development 108, 47–58
    OpenUrlAbstract
    1. Wilkinson D. G.
    (1995) Genetic control of segmentation in the vertebrate hindbrain. Perspect. Dev. Neurobiol 3, 29–38
    OpenUrlPubMed
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Wood H.,
    2. Pall G.,
    3. Morriss-Kay G.
    (1994) Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3HoxB gene expression domains. Development 120, 2279–2285
    OpenUrlAbstract
    1. Zhang M.,
    2. Kim H. J.,
    3. Marshall H.,
    4. Gendron-Maguire M.,
    5. Lucas D. A.,
    6. Baron A.,
    7. Gudas L. J.
    (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120, 2431–2442
    OpenUrlAbstract/FREE Full Text
    1. Zhang J.,
    2. Hagopian-donaldson S.,
    3. Serbedzija G.,
    4. Elsemore J.,
    5. Plehn-dujowich D.,
    6. McMahon A. P.,
    7. Flavell R. A.,
    8. Williams T.
    (1996) Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE)
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE)
V. Dupe, M. Davenne, J. Brocard, P. Dolle, M. Mark, A. Dierich, P. Chambon, F.M. Rijli
Development 1997 124: 399-410;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE)
V. Dupe, M. Davenne, J. Brocard, P. Dolle, M. Mark, A. Dierich, P. Chambon, F.M. Rijli
Development 1997 124: 399-410;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992