Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads
A.F. Candia, T. Watabe, S.H. Hawley, D. Onichtchouk, Y. Zhang, R. Derynck, C. Niehrs, K.W. Cho
Development 1997 124: 4467-4480;
A.F. Candia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Watabe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.H. Hawley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Onichtchouk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Derynck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Niehrs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.W. Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

During early embryogenesis of Xenopus, dorsoventral polarity of the mesoderm is established by dorsalizing and ventralizing agents, which are presumably mediated by the activity of an activin/BVg1-like protein and Bone Morphogenetic Proteins (BMP), respectively. Interestingly, these two TGF-beta subfamilies are found in overlapping regions during mesoderm patterning. This raises the question of how the presumptive mesodermal cells recognize the multiple TGF-beta signals and differentially interpret this information to assign a particular cell fate. In this study, we have exploited the well characterized model of Xenopus mesoderm induction to determine the intracellular interactions between BMP-2/4 and activin/BVg1 signaling cascades. Using a constitutively active BMP-2/4 receptor that transduces BMP-2/4 signals in a ligand-independent fashion, we demonstrate that signals provided by activin/BVg1 and BMP modulate each other's activity and that this crosstalk occurs through intracellular mechanisms. In assays using BMP-2/4 and activin/BVg1-specific reporters, we determined that the specificity of BMP-2/4 and activin/BVg1 signaling is mediated by Smad1 and Smad2, respectively. These Smads should be considered as the mediators of the intracellular antagonism between BMP-2/4 and activin/BVg1 signaling possibly through sequestration of a limited pool of Smad4. Consistent with such a mechanism, Smad4 interacts functionally with both Smad1 and −2 to potentiate their signaling activities, and a dominant negative variant of Smad4 can inhibit both activin/BVg1 and BMP-2/4 mediated signaling Finally, we demonstrate that an activin/BVg1-dependent transcriptional complex contains both Smad2 and Smad4 and thereby provides a physical basis for the functional involvement of both Smads in TGF-beta-dependent transcriptional regulation. Thus, Smad4 plays a central role in synergistically activating activin/BVg1 and BMP-dependent transcription and functions as an intracellular sensor for TGF-beta-related signals.

REFERENCES

    1. Baker J. C.,
    2. Harland R. M.
    (1996) A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev 10, 1880–1889
    OpenUrlAbstract/FREE Full Text
    1. Blitz I. L.,
    2. Cho K. W. Y.
    (1995) Anterior neuroectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004
    OpenUrlAbstract
    1. Brummel T. J.,
    2. Twombly V.,
    3. Marques G.,
    4. Wrana J. L.,
    5. Newfeld S. J.,
    6. Attisano L.,
    7. Massague J.,
    8. O'Connor M. B.,
    9. Gelbart W. M.
    (1994) Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78, 251–261
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen X.,
    2. Rubock M. J.,
    3. Whitman M.
    (1996) A transcriptinal partner for MAD proteins in TGF-singalling. Nature 383, 691–696
    OpenUrlCrossRefPubMedWeb of Science
    1. Cho K. W. Y.,
    2. Blumberg G.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1991) Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120
    OpenUrlCrossRefPubMedWeb of Science
    1. Chomzynski P.,
    2. Sacchi N.
    (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem 162, 156–159
    OpenUrlCrossRefPubMedWeb of Science
    1. Dale L.,
    2. Howes G.,
    3. Price B. M. J.,
    4. Smith J. C.
    (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585
    OpenUrlAbstract
    1. Derynck R.,
    2. Zhang Y.
    (1996) The Mad way to do it. Curr. Biol 6, 1226–1229
    OpenUrlCrossRefPubMedWeb of Science
    1. de Wet, J. R.,
    2. Wood K. V.,
    3. DeLuca M.,
    4. Helinski D. R.,
    5. Subramani S.
    (1987) Firefly, luciferase gene: Structure and expression in mammalian cells. Mol. Cell Biol 7, 725–737
    OpenUrlAbstract/FREE Full Text
    1. Eppert K.,
    2. Scherer S. W.,
    3. Ozcelik H.,
    4. Pirone R.,
    5. Hoodless P.,
    6. Kim H.,
    7. Tsui L.-C.,
    8. Bapat B.,
    9. Gallinger S.,
    10. Andrulis I.,
    11. Thomson J. H.,
    12. Wrana J.,
    13. Attisano L.
    (1996) MADR2 maps to 18q21 and encodes a TGF--regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552
    OpenUrlCrossRefPubMedWeb of Science
    1. Fainsod A.,
    2. Steinbeisser H.,
    3. De Robertis E. M.
    (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13, 5015–5025
    OpenUrlPubMedWeb of Science
    1. Gawantka V.,
    2. Delius H.,
    3. Hirschfeld K.,
    4. Blumenstock C.,
    5. Nihers C.
    (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14, 6268–6279
    OpenUrlPubMedWeb of Science
    1. Graff J.,
    2. Thies R. S.,
    3. Song J. J.,
    4. Celeste A. J.,
    5. Melton D. A.
    (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179
    OpenUrlCrossRefPubMedWeb of Science
    1. Graff J. M.,
    2. Bansal A.,
    3. Melton D. A.
    (1996) Xenopus mad proteins transduce distinct subsets of signals for the TGFsuperfamily. Cell 85, 479–487
    OpenUrlCrossRefPubMedWeb of Science
    1. Green J. B.,
    2. Smith J. C.
    (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394
    OpenUrlCrossRefPubMed
    1. Hawley S. H. B.,
    2. Wunnenberg-Stapleton K.,
    3. Hashimoto C.,
    4. Laurent M. N.,
    5. Watabe T.,
    6. Blumberg B. W.,
    7. Cho K. W. Y.
    (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9, 2923–2935
    OpenUrlAbstract/FREE Full Text
    1. Hogan B. L.
    (1996) Bone morphogenetic proteins: multifunctinal regulators of vertebrate development. Genes Dev 10, 1580–1594
    OpenUrlFREE Full Text
    1. Hoodless P. A.,
    2. Haerry T.,
    3. Abdollah S.,
    4. Stapleton M.,
    5. O'Connor M. B.,
    6. Attisano L.,
    7. Wrana J. L.
    (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Howard E. W.,
    2. Knauer D. J.
    (1986) Biosynthesis of protease nexin-I. J. Biol. Chem 261, 14184–14190
    OpenUrl
    1. Jones C. M.,
    2. Dale L.,
    3. Hogan B. L. M.,
    4. Wright C. V. E.,
    5. Smith J. C.
    (1996) Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development 122, 1545–1554
    OpenUrlAbstract
    1. Jones C. M.,
    2. Kuehn M. R.,
    3. Hogan B. L.,
    4. Smith J. C.,
    5. Wright C. V.
    (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 3651–62
    OpenUrlAbstract
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Lapan P. M.,
    4. Wright C. V. E.,
    5. Hogan B. L. M.
    (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647
    OpenUrlAbstract
    1. Kessler D. S.,
    2. Melton D. A.
    (1995) Induction of dorsal mesoderm by soluble, mature Vg1 protein. Development 121, 2155–64
    OpenUrlAbstract
    1. Kim J.,
    2. Johnson K.,
    3. Chen H.J.,
    4. Carroll S.,
    5. Laughon A.
    (1997) Drosophila MAD binds to DMA and directly mediates activation of vestigial by decapentaplegic. Nature 388, 304–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Krieg P. A.,
    2. Melton D. A.
    (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl. Acid Res 12, 7057–7070
    OpenUrlAbstract/FREE Full Text
    1. Lagna G.,
    2. Hata A.,
    3. Hemmati-Brivanlou A.,
    4. Massague J.
    (1996) Partnership between DPC4 and SMADproteins in TGF-signalling pathways. Nature 383, 832–836
    OpenUrlCrossRefPubMedWeb of Science
    1. Letsou A.,
    2. Arora K.,
    3. Wrana J. L.,
    4. Simin K.,
    5. Twombly V.,
    6. Jamal. J.,
    7. Staehling-Hampton K.,
    8. Hoffmann F. M.,
    9. Gelbart W. M.,
    10. Massague J.,
    11. O'Connor M. B.
    (1995) Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80, 899–908
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu F.,
    2. Hata A.,
    3. Baker J. C.,
    4. Doody J.,
    5. Carcamo J.,
    6. Harland R. M.,
    7. Massague J.
    (1996) A human mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623
    OpenUrlCrossRefPubMed
    1. Macias-Silva M.,
    2. Abdollah S.,
    3. Hoodless P. A.,
    4. Pirone R.,
    5. Attisano L.,
    6. Wrana J. L.
    (1996) MADR2 is a substrate of the TGFreceptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224
    OpenUrlCrossRefPubMedWeb of Science
    1. Massague J.
    (1996) TGFsignaling: receptors, transducers, and mad proteins. Cell 85, 947–950
    OpenUrlCrossRefPubMedWeb of Science
    1. Nellen D.,
    2. Burke R.,
    3. Struhl G.,
    4. Basler K.
    (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368
    OpenUrlCrossRefPubMedWeb of Science
    1. Newfeld S. J.,
    2. Chartoff E. H.,
    3. Graff J. M.,
    4. Lemton D. A.,
    5. Gelbert W. M.
    (1996) Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF--responsive cells. Development 122, 2099–2108
    OpenUrlAbstract
    1. Nishimatsu S.,
    2. Suzuki A.,
    3. Shoda A.,
    4. Murakami K.,
    5. Ueno N.
    (1992) Genes for bone morphogenetic proteins are differentially transcribed in early amphibian embryos. Bioch. Biophys. Res. Comm 186, 1487–1495
    OpenUrlCrossRefPubMedWeb of Science
    1. Onichtchouk D.,
    2. Gawantka V.,
    3. Dosch R.,
    4. Delius H.,
    5. Hirschfeld.,
    6. Blumenstock C.,
    7. Niehrs C.
    (1996) The Xvent-2 homeobox gene is part of the BMP-4 signallingpathway controling dorsovental patterning of Xenopus mesoderm. Development 122, 3045–3053
    OpenUrlAbstract
    1. Piccolo S.,
    2. Sasai Y.,
    3. Lu B.,
    4. De Robertis E. M.
    (1996) Dorsovental patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598
    OpenUrlCrossRefPubMedWeb of Science
    1. Raftery L. A.,
    2. Twombly V.,
    3. Wharton K.,
    4. Gelbert W. M.
    (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254
    OpenUrlAbstract/FREE Full Text
    1. Rosenzweig B. L.,
    2. Imamura T.,
    3. Okadome T.,
    4. Cox G. N.,
    5. Yamashita H.,
    6. ten Dijke P.,
    7. Helding C. H.,
    8. Miyazono K.
    (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl. Acad. Sci. USA 92, 7632–7636
    OpenUrlAbstract/FREE Full Text
    1. Savage C.,
    2. Das P.,
    3. Finelli A.,
    4. Townsend S.,
    5. Sun C.,
    6. Baird S.,
    7. Padgett R.
    (1996) Caenorhabditis elegans gene sma-2 and sma-3 and sma-4 define a conserved family of transforming growth factor b pathway components. Proc. Natl. Acad. Sci. USA 93, 7790–9974
    OpenUrl
    1. Sekelsky J. J.,
    2. Newfeld S. J.,
    3. Raftery L. A.,
    4. Chartoff E. H.,
    5. Gelbert W. M.
    (1995) Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358
    OpenUrlAbstract/FREE Full Text
    1. Schmidt J. E.,
    2. Suzuki A.,
    3. Ueno N.,
    4. Kimelman D.
    (1995) Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev. Biol 169, 37–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Shi Y.,
    2. Hata A.,
    3. Lo R. S.,
    4. Massague,
    5. Pavletich N. P.
    (1997) A structural basis for mutational inactivation of the tumor suppressor Smad4. Nature 388, 87–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith J. C.
    (1995) Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol 7, 856–61
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. McKendry R.,
    3. Ribisi S.,
    4. Harland R. M.
    (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Steinbeisser H.,
    2. Fainsod A.,
    3. Niehrs C.,
    4. Sasai Y.,
    5. De Robertis E. M.
    (1995) The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J 14, 230–243
    OpenUrl
    1. Suzuki A.,
    2. Nishimatsu S.,
    3. Murakami K.,
    4. Ueno N.
    (1993) Differential expression of Xenopous BMPs in early embryos and tissues. Zool. Sci 10, 175–178
    OpenUrlPubMedWeb of Science
    1. Suzuki A.,
    2. Thies R. S.,
    3. Yamaji N.,
    4. Song J. J.,
    5. Wozney J. M.,
    6. Murakami K.,
    7. Ueno N.
    (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91, 10255–10259
    OpenUrlAbstract/FREE Full Text
    1. ten Dijke P.,
    2. Yamashita H.,
    3. Sampath T. K.,
    4. Reddi A. H.,
    5. Estevez M.,
    6. Riddle D. L.,
    7. Ichijo H.,
    8. Heldin C. H.,
    9. Miyazono K.
    (1994) Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J. Biol. Chem 269, 16985–16988
    OpenUrlAbstract/FREE Full Text
    1. Thomsen G. H.
    (1996) Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 122, 2359–2366
    OpenUrlAbstract
    1. Thomsen G.,
    2. Melton D. A.
    (1993) Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell 74, 433–441
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomsen G.,
    2. Woolf T.,
    3. Whitman M.,
    4. Sokol S.,
    5. Vaughan J.,
    6. Vale W.,
    7. Melton D. A.
    (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493
    OpenUrlCrossRefPubMedWeb of Science
    1. Watabe T.,
    2. Kim S.,
    3. Candia A.,
    4. Rothbächer U.,
    5. Hashimoto C.,
    6. Inoue K.,
    7. Cho K. W. Y.
    (1995) Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 9, 3038–3050
    OpenUrlAbstract/FREE Full Text
    1. Wall N. A.,
    2. Hogan B. L.
    (1994) TGF-related genes in development. Curr. Opin. Genet. Dev 4, 517–522
    OpenUrlCrossRefPubMed
    1. Wieser R.,
    2. Wrana J. L.,
    3. Massague J.
    (1995) GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-eta receptor complex. EMBO J 14, 2199–2208
    OpenUrlPubMedWeb of Science
    1. Wrana J. L.,
    2. Attisano L.,
    3. Wieser R.,
    4. Ventrua F.,
    5. Massague J.
    (1994) Mechanism of activation of the TGF-beta receptor. Nature 370, 341–347
    OpenUrlCrossRefPubMedWeb of Science
    1. Wu R.-Y.,
    2. Zhang Y.,
    3. Feng X.-H.,
    4. Derynck R.
    (1997) Homomeric and heteromeric interactions are required for signaling activity and functional cooperativity of Smad-3 and-4. Mol. Cell. Biol 17, 2521–2528
    OpenUrlAbstract/FREE Full Text
    1. Yamashita H.,
    2. ten Dijke P.,
    3. Huylebroeck D.,
    4. Sampath T. K.,
    5. Andries M.,
    6. Smith J. C.,
    7. Heldin C. H.,
    8. Miyazono K.
    (1995) Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol 130, 217–26
    OpenUrlAbstract/FREE Full Text
    1. Yingling J. M.,
    2. Das P.,
    3. Savage C.,
    4. Zhang M.,
    5. Padgetts R.,
    6. Wang X. F.
    (1996) Mammalian Dwarfins are phosphorylated in response to transforming growth factor-and are implicated in control of cell growth. Proc. Natl. Acad. Sci. USA 93, 8940–8944
    OpenUrlAbstract/FREE Full Text
    1. Zhang Y.,
    2. Feng X.-H.,
    3. Wu R.-Y.,
    4. Derynk R.
    (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-response. Nature 383, 168–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang Y.,
    2. Musci T.,
    3. Derynck R.
    (1997) The tumor suppressor Smad 4/DPC 4 as a central mediator of Smad function. Current Biol 7, 270–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Zimmerman L. B.,
    2. De Jesus-Escobar J. M.,
    3. Harland R. M.
    (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads
A.F. Candia, T. Watabe, S.H. Hawley, D. Onichtchouk, Y. Zhang, R. Derynck, C. Niehrs, K.W. Cho
Development 1997 124: 4467-4480;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads
A.F. Candia, T. Watabe, S.H. Hawley, D. Onichtchouk, Y. Zhang, R. Derynck, C. Niehrs, K.W. Cho
Development 1997 124: 4467-4480;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992