Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate
H. Li, C. Tierney, L. Wen, J.Y. Wu, Y. Rao
Development 1997 124: 603-615;
H. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Tierney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Wen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.Y. Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Rao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Two bilaterally symmetric eyes arise from the anterior neural plate in vertebrate embryos. An interesting question is whether both eyes share a common developmental origin or they originate separately. We report here that the expression pattern of a new gene ET reveals that there is a single retina field which resolves into two separate primordia, a suggestion supported by the expression pattern of the Xenopus Pax-6 gene. Lineage tracing experiments demonstrate that retina field resolution is not due to migration of cells in the median region to the lateral parts of the field. Removal of the prechordal mesoderm led to formation of a single retina both in chick embryos and in Xenopus explants. Transplantation experiments in chick embryos indicate that the prechordal plate is able to suppress Pax-6 expression. Our results provide direct evidence for the existence of a single retina field, indicate that the retina field is resolved by suppression of retina formation in the median region of the field, and demonstrate that the prechordal plate plays a primary signaling role in retina field resolution.

REFERENCES

    1. Adelmann H. B.
    (1929) Experimental studies on the development of the eye. I. The effect of the removal of median and lateral areas of the anterior end of the urodelan neural plate on the development of the eyes (Triton teniatus and Amblystoma punctatum). J. Exp. Zool 54, 249–290
    OpenUrlCrossRef
    1. Adelmann H. B.
    (1929) Experimental studies on the development of the eye. II. The eye-forming potencies of the median portions of the urodelan neural plate (Triton teniatus and Amblystoma punctatum). J. Exp. Zool 54, 291–317
    OpenUrlCrossRef
    1. Adelmann H. B.
    (1930) Experimental studies on the development of the eye. III. The effect of the substrate (‘unterlagerung’) on the heterotopic development of median and lateral strips of the anterior end of the neural plate of A mblystoma. J. Exp. Zool 57, 223–281
    OpenUrlCrossRef
    1. Adelmann H. B.
    (1934) A study of cyclopia in Amblystoma punctatum, with special reference to the mesoderm. J. Exp. Zool 67, 217–281
    OpenUrlCrossRefWeb of Science
    1. Adelmann H. B.
    (1936) The problem of cyclopia. Pt. I. Quar. Rev. Biol 11, 161–182
    OpenUrlCrossRef
    1. Adelmann H. B.
    (1936) The problem of cyclopia. Pt. II. Quar. Rev. Biol 11, 284–304
    OpenUrlCrossRef
    1. Atkin J. F.
    (1988) A new syndrome with cyclopia and trisomy 13 features. Am. J. Hum. Genet 43, 36–.
    OpenUrl
    1. Basler K.,
    2. Edlund T.,
    3. Jessell T.,
    4. Yamada T.
    (1993) Control of cellpattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF- family member. Cell 73, 687–702
    OpenUrlCrossRefPubMedWeb of Science
    1. Bennett D.
    (1975) The T-locus of the mouse. Cell 6, 441–454
    OpenUrlCrossRefWeb of Science
    1. Bollag R. J.,
    2. Siegfried Z.,
    3. Cebra-Thomas J. A.,
    4. Garvey N.,
    5. Davison E. M.,
    6. Silver L. M.
    (1994) An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nature Genet 7, 383–389
    OpenUrlCrossRefPubMedWeb of Science
    1. Boterenbrood E. C.
    (1970) Differentiation in small grafts of the median region of the presumptive prosencephalon. J. Embryol. Exp. Morph 23, 751–759
    OpenUrlPubMed
    1. Brown N. A.,
    2. Wolpert L.
    (1990) The development of handedness in left/right asymmetry. Development 109, 1–9
    OpenUrlAbstract
    1. Bulfone A.,
    2. Smiga S. M.,
    3. Shimamura K.,
    4. Peterson A.,
    5. Puelles L.,
    6. Rubenstein J. L. R.
    (1995) T-Brain-1: A homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78
    OpenUrlCrossRefPubMedWeb of Science
    1. Chesley P.
    (1935) Development of the short-tailed mutant in the house mouse. J. exp. Zool 70, 429–435
    OpenUrlCrossRefWeb of Science
    1. Cohen M. M., Jr
    (1989) Perspectives on holoprosencephaly: part 1. epidemiology, genetics, and syndromology. Teratol 40, 211–235
    OpenUrlCrossRefPubMedWeb of Science
    1. Copenhaver W. M.
    (1926) Experiments on the development of the heart of Amblystoma punctatum. J. Exp. Zool 43, 321–371
    OpenUrlCrossRef
    1. Corner M. A.
    (1963) Development of the brain in Xenopuslaevis after removal of parts of the neural plate. J. Exp. Zool 153, 301–311
    OpenUrlCrossRefPubMed
    1. Corner M. A.
    (1966) Morphogenetic field properties of the forebrain area of the neural plate in an anuran. Experientia 22, 188–189
    OpenUrlCrossRefPubMed
    1. Danos M. C.,
    2. Yost H. J.
    (1995) Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 121, 1467–1474
    OpenUrlAbstract
    1. Eagleson G. W.,
    2. Ferreiro B.,
    3. Harris W. A.
    (1995) Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J. Neurobiol 28, 146–158
    OpenUrlCrossRefPubMed
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St.-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ekker S. C.,
    2. Unger A. R.,
    3. Greenstein P.,
    4. von Kessler,
    5. Porter J. A.D.P.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Cur. Biol 5, 944–954
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Muhr J.,
    3. Placzek,
    4. Lints T.,
    5. Jessell T. M.,
    6. Edlund T.
    (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Glaser T.,
    2. Jepeal L.,
    3. Edwards J. G.,
    4. Young S. R.,
    5. Favor J.,
    6. Maas R. L.
    (1994) Pax6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defect. Nature Genet 7, 463–471
    OpenUrlCrossRefPubMedWeb of Science
    1. Goulding M. D.,
    2. Lumsden A.,
    3. Gruss P.
    (1993) Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development 117, 1001–1016
    OpenUrlAbstract
    1. Gruneberg H.
    (1958) Genetical studies on the skeleton of the mouse XXIII: The development of Brachyury and Anury. J. Embryol. exp. Morph 6, 424–443
    1. Halder G.,
    2. Callaerts P.,
    3. Gehring W. J.
    (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792
    OpenUrlAbstract/FREE Full Text
    1. Halpern M. E.,
    2. Ho R. K.,
    3. Walker C.,
    4. Kimmel C. B.
    (1993) Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111
    OpenUrlCrossRefPubMedWeb of Science
    1. Hamburger V.,
    2. Hamilton H.
    (1951) A series of normal stages in the development of the chick embryo. J. Morphol 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Hammerschmidt M.,
    2. Bitgood M. J.,
    3. McMahon A. P.
    (1996) Proteinkinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 10, 647–658
    OpenUrlAbstract/FREE Full Text
    1. Hatta K.
    (1992) Role of the floor plate in axonal patterning in the zebrafish CNS. Neuron 9, 629–642
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatta K.,
    2. Kimmel C. B.,
    3. Ho R. K.,
    4. Walker C.
    (1991) The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341
    OpenUrlCrossRefPubMed
    1. Hatta K.,
    2. Puschell A. W.,
    3. Kimmel C. B.
    (1994) Midline signaling in the primordium of the zebrafish anterior central nervous system. Proc. Natl. Acad. Sci. USA 91, 2061–2065
    OpenUrlAbstract/FREE Full Text
    1. Hemmati-Brivanolou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organiser and displays direct neuralizing activity. Cell 77, 283–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Herrmann B. G.,
    2. Labeit S.,
    3. Poustka A.,
    4. King T. R.,
    5. Lehrach H.
    (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622
    OpenUrlCrossRefPubMed
    1. Herrmann B. G.,
    2. Kispert A.
    (1994) The T genes in embryogenesis. Trends Genet 10, 280–286
    OpenUrlCrossRefPubMedWeb of Science
    1. Hill R. E.,
    2. Favor J.,
    3. Hogan B. L.,
    4. Ton C.C.,
    5. Saunders G. F.,
    6. Hanson I. M.,
    7. Prosser J.,
    8. Jordan T.,
    9. Hastie N. D.,
    10. van Heyningen V.
    (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525
    OpenUrlCrossRefPubMedWeb of Science
    1. Hogan B. L. M.,
    2. Hirst E. M. A.,
    3. Horsburgh G.,
    4. Hetherrington C. M.
    (1988) Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 103, 115–119
    1. Izpisua-Belmonte J. C.,
    2. De Robertis E. M.,
    3. Storey K. G.,
    4. Stern C. D.
    (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659
    OpenUrlCrossRefPubMedWeb of Science
    1. Jacobs R. E.,
    2. Fraser S. E.
    (1994) Magnetic resonance microscopy of embryonic cell lineages and movements. Science 263, 618–684
    OpenUrl
    1. Jacobson M.,
    2. Hirose G.
    (1978) Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science 202, 637–639
    OpenUrlAbstract/FREE Full Text
    1. Jessell T. M.,
    2. Bolenta P.,
    3. Placzek M.,
    4. Tessier-Lavigne M.,
    5. Dodd J.
    (1988) Polarity and patterning in the neural tube: the origin and role of the floor plate. Ciba Found. Symp 144, 255–280
    OpenUrl
    1. Jordan T.,
    2. Hanson I.,
    3. Zaletayev D.,
    4. Hodgson S.,
    5. Prosser J.,
    6. Ceawright A.,
    7. Hastie N.,
    8. van Heyningen V.
    (1992) The human PAX6 gene is mutated in two patients with aniridia. Nature Genet 1, 328–332
    OpenUrlCrossRefPubMedWeb of Science
    1. Kallen B.,
    2. Castilla E. E.,
    3. Lancaster P. A. L.,
    4. Mutchinick O.,
    5. Knudsen L. B.,
    6. Martinez-Frias M. L.,
    7. Mastroiacovo P.,
    8. Robert E.
    (1992) The cyclops and the mermaid: an epidemiological study of two types of rare malformation. J. Med. Genet 29, 30–35
    OpenUrlAbstract/FREE Full Text
    1. Kispert A.,
    2. Herrmann B. G.
    (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12, 3211–3220
    OpenUrlPubMedWeb of Science
    1. Kispert A.,
    2. Herrmann B. G.,
    3. Leptin M.,
    4. Reuter R.
    (1994) Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium and Locusta. Genes Dev 8, 2137–2150
    OpenUrlAbstract/FREE Full Text
    1. Kispert A.,
    2. Koschorz B.,
    3. Herrmann B. G.
    (1995) The T protein encoded by Brachyury is a tissue specific transcription factor. EMBO J 14, 4763–4772
    OpenUrlPubMedWeb of Science
    1. Klar A. J. S.
    (1994) A model for specification of the left-right axis in vertebrates. Trends Genet 10, 292–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Krauss S.,
    2. Johanson T.,
    3. Korzh V.,
    4. Fjose A.
    (1991) Expression pattern of zebrafish pax genes suggest a role in early brain regionalization. Nature 353, 267–270
    OpenUrlCrossRefPubMed
    1. Krauss S.,
    2. Concordet J.-P.,
    3. Ingham P. W.
    (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamb T. M.,
    2. Knecht A. K.,
    3. Smith W. C.,
    4. Stachel S. E.,
    5. Economides A. N.,
    6. Stall N.,
    7. Yancopopous G. D.,
    8. Harland R. M.
    (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713–718
    OpenUrlAbstract/FREE Full Text
    1. LePlat G.
    (1919) Action du milieu sur le developpement des larves d'amphibiens. Localisation et differenciation des premieres ebauches oculaires chez les vertebres. Cyclopie et anophtalmie. Arch. de Biol 30, 231–321
    OpenUrl
    1. Lewis W. H.
    (1907) Experiments on the origin and differentiation of the optic vesicle in amphibia. Am. J. Anat 4, 259–277
    OpenUrlCrossRef
    1. Lewis W. H.
    (1909) The experimental production of cyclopia in the fish embryo (Fundulus heteroclitus). Anat. Rec 3, 175–181
    OpenUrlCrossRef
    1. Levin M.,
    2. Johnson R. L.,
    3. Stern C. D.,
    4. Kuehn M.,
    5. Tabin C.
    (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814
    OpenUrlCrossRefPubMedWeb of Science
    1. Li H.-S.,
    2. Yang J.-M.,
    3. Jacobson R. D.,
    4. Pasko D.,
    5. Sundin O.
    (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol 162, 181–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Liem K. F., Jr.,
    2. Tremml G.,
    3. Roelink H.,
    4. Jessell T. M.
    (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979
    OpenUrlCrossRefPubMedWeb of Science
    1. Macdonald R.,
    2. Barth K. A.,
    3. Xu Q.,
    4. Holder N.,
    5. Mikkola I.,
    6. Wilson S. W.
    (1995) Midline signaling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278
    OpenUrlAbstract
    1. Marti E.,
    2. Takada R.,
    3. Bumcrot D. A.,
    4. Sasaki H.,
    5. MaMahan A. P.
    (1995) Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547
    OpenUrlAbstract
    1. Moerman P.,
    2. Fryns J. P.
    (1988) Holoprosencephaly and postaxial polydactyly. J. Med. Genet 25, 501–502
    OpenUrlFREE Full Text
    1. Muenke M.,
    2. Gurrieri F.,
    3. Bay C.,
    4. Yi D. H.,
    5. Collins A. L.,
    6. Johnson V. P.,
    7. Hennekam R. C. M.,
    8. Schaefer G. B.,
    9. Weik L.,
    10. Lubinsky M. S.,
    11. Daack-Hirsch S.,
    12. Moore C.A.,
    13. Dobyns W. B.,
    14. Murray J. C.,
    15. Price R. A.
    (1994) Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc. Natl. Acad. Sci. USA 91, 8102–8106
    OpenUrlAbstract/FREE Full Text
    1. Pflugfelder G. O.,
    2. Roth H.,
    3. Poeck B.,
    4. Kerscher S.,
    5. Schwarz H.,
    6. Jonschker B.,
    7. Heisenberg M.
    (1992) The lethal(1)optomotor-blind gene of Drosophila melanogaster is a major organizer of the optic lobe development: isolation and characterization of the gene. Proc. Natl. Acad. Sci. USA 89, 1199–1203
    OpenUrlAbstract/FREE Full Text
    1. Pflugfelder G. O.,
    2. Roth H.,
    3. Poeck B.
    (1992) A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem. Biophy. Res. Comm 186, 918–925
    OpenUrlCrossRefPubMedWeb of Science
    1. Placzek M.,
    2. Jessell T. M.,
    3. Dodd J.
    (1993) Induction of floor plate differentiation by contact-dependent, homeogenetic signals. Development 117, 205–218
    OpenUrlAbstract/FREE Full Text
    1. Puschel A. W.,
    2. Gruss P.,
    3. Westerfield M.
    (1992) Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114, 643–651
    OpenUrlAbstract
    1. Quiring R.,
    2. Walldorf U.,
    3. Kloter U.,
    4. Gehring W. J.
    (1994) Homology of the eyeless gene of Drosophila to the Smalleye gene in mice and Aniridia in humans. Science 265, 785–789
    OpenUrlAbstract/FREE Full Text
    1. Rao Y.
    (1994) Conversion of a mesodermalizing molecule, the Xenopus Brachyury gene, into a neuralizing factor. Genes Dev 8, 939–947
    OpenUrlAbstract/FREE Full Text
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek,
    9. Edlund T.,
    10. Jessell T. M.,
    11. Dodd. J.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Saldivar J. R.,
    2. Krull C. E.,
    3. Krumlauf R.,
    4. Ariz-McNaughton L.,
    5. Bronner-Fraser M.
    (1996) Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa3 in the avian embryo. Development 122, 895–906
    OpenUrlAbstract
    1. Schulte-Merker S.,
    2. Ho R.K.,
    3. Herrmann B. G.,
    4. Nusslein-Volhard C.
    (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032
    OpenUrlAbstract/FREE Full Text
    1. Schulte-Merker S.,
    2. van Eeden F. J. M.,
    3. Halpern M. E.,
    4. Kimmel C. B.,
    5. Nusslein-Volhard C.
    (1994) no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015
    OpenUrlAbstract
    1. Shih J.,
    2. Fraser S. E.
    (1995) The distribution of tissue progenitors within the shield region of zebrafish gastrula. Development 121, 2755–2765
    OpenUrlAbstract
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J. L. R.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Shiota K.,
    2. Tanimura T.
    (1988) Holoprosencephaly, ventricular septal defect, and postaxial polydactyly in a human embryo. J. Med. Genet 25, 502–503
    OpenUrlFREE Full Text
    1. Smith J. C.,
    2. Price B. M.,
    3. Green J. B.,
    4. Weigel D.,
    5. Herrmann B. G.
    (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Sperber G. H.,
    2. Johnson E. S.,
    3. Honore L.,
    4. Machin G. A.
    (1987) Holoprosencephalic synophthalmia (cyclopia) in an 8 week fetus. J. Cran. Genet. Dev. Biol 7, 7–18
    OpenUrlPubMed
    1. Stockard C. R.
    (1908) The question of cyclopia, one-eye monsters. Science 28, 455–456
    OpenUrlFREE Full Text
    1. Stockard C. R.
    (1909) The artificial production of one-eyed monsters and other defects, which occur in nature, by the use of chemicals. Anat. Rec 3, 167–173
    OpenUrlCrossRef
    1. Stockard C. R.
    (1909) . The development of artificially produced cyclopean fish- ‘the magnesium embryo.’. J. Exp. Zool 6, 285–339
    OpenUrlCrossRefWeb of Science
    1. Stockard C. R.
    (1910) The influence of alcohol and other anaesthetics on embryonic development. Am. J. Anat 10, 369–392
    OpenUrlCrossRefWeb of Science
    1. Stockard C. R.
    (1913) The location of the optic anlage in Amblystoma and the interpretation of certain eye defects. Proc. Soc. Exp. Biol. Med 10, 162–164
    OpenUrlAbstract/FREE Full Text
    1. Stockard C. R.
    (1913) An experimental study of the position of the optic anlage in Amblystoma punctatum, with a discussion of certain eye defects. Am. J. Anat 15, 253–289
    OpenUrlCrossRefWeb of Science
    1. Stockard C. R.
    (1914) The artificial production of eye abnormalities in the chick embryo. Anat. Rec 8, 33–41
    OpenUrlCrossRef
    1. Sundin O.,
    2. Eichele G.
    (1992) An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114, 841–852
    OpenUrlAbstract
    1. Ton C.C.,
    2. Hirvonen H.,
    3. Miwa H.,
    4. Weil M. M.,
    5. Monaghan P.,
    6. Jordan T.,
    7. van Heyningen V.,
    8. Hastie N.D.,
    9. Meijers-Heijboer H.,
    10. Drechsler M.
    (1991) Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074
    OpenUrlCrossRefPubMedWeb of Science
    1. van Straaten H. W. M.,
    2. Hekking J. W. M.,
    3. Wiertz-Hoessels E. L.,
    4. Thors F.,
    5. Drukker J.
    (1988) Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo. Anat. Embryol 177, 317–324
    OpenUrlCrossRefPubMed
    1. Walther C.,
    2. Gruss P.
    (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449
    OpenUrlAbstract
    1. Woo K.,
    2. Fraser S. E.
    (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121, 2595–2609
    OpenUrlAbstract
    1. Yamada T.,
    2. Placzek M.,
    3. Tanaka H.,
    4. Dodd J.,
    5. Jessell T.M.
    (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamada T.,
    2. Pfaff S. L.,
    3. Edlund T.,
    4. Jessell T. M.
    (1993) Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73, 673–686
    OpenUrlCrossRefPubMedWeb of Science
    1. Yasuo H.,
    2. Satoh N.
    (1994) An ascidian homolog of the mouse Brachyury (T) gene is expressed exclusively in notochord cells at the fate restricted stage. Dev. Growth Differ 26, 9–18
    1. Yost H. J.
    (1990) Inhibition of proteoglycan synthesis eliminates left-right asymmetry in Xenopus laevis cardiac looping. Development 110, 865–874
    OpenUrlAbstract/FREE Full Text
    1. Yost H. J.
    (1991) Development of the left-right axis in amphibians. Ciba Foundation Symp 162, 165–176
    OpenUrlPubMed
    1. Yost H. J.
    (1992) Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature 357, 158–161
    OpenUrlCrossRefPubMed
    1. Yost H. J.
    (1995) Vertebrate left-right development. Cell 82, 689–692
    OpenUrlCrossRefPubMedWeb of Science
    1. Young I. D.,
    2. Madders D. J.
    (1987) Unknown syndrome: holoprosencephaly, congenital heart defects, and polydactyly. J. Med. Genet 24, 714–715
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate
H. Li, C. Tierney, L. Wen, J.Y. Wu, Y. Rao
Development 1997 124: 603-615;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate
H. Li, C. Tierney, L. Wen, J.Y. Wu, Y. Rao
Development 1997 124: 603-615;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992