Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group
A. Grapin-Botton, M.A. Bonnin, N.M. Douarin Le
Development 1997 124: 849-859;
A. Grapin-Botton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Bonnin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.M. Douarin Le
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

It has been previously shown that Hox gene expression in the rhombencephalon is controlled by environmental cues. Thus posterior transposition of anterior rhombomeres to the r7/8 level results in the activation of Hox genes of the four first paralog groups and in homeotic transformations of the neuroepithelial fate according to its position along the anteroposterior axis. We demonstrate here that although the anteroposterior levels of r2 to r6 express Hox genes they do not have inducing activity on more anterior territories. If transposed at the posterior rhombencephalon and trunk level, however, the same anterior regions are able to express Hox gene such as Hoxa-2, a-3 or b-4. We also provide evidence that these signals are transferred by two paths: one vertical, arising from the paraxial mesoderm, and one planar, travelling in the neural epithelium. The competence to express Hox genes extends up to the forebrain and midbrain but expression of Hox genes does not preclude Otx2 expression in these territories and results only in slight changes in their phenotypes. Similarly, rhombomeres transplanted to posterior truncal levels turned out to be able to express posterior genes of the first eight paralog groups to the exclusion of others located downstream in the Hox genes genomic clusters. This suggests that the neural tube is divided into large territories characterized by different Hox gene regulatory features.

REFERENCES

    1. Acampora D.,
    2. Mazan S.,
    3. Lallemand Y.,
    4. Avantaggiato V.,
    5. Maury M.,
    6. Simeone A.,
    7. Brûlet P.
    (1995) Forebrain and midbrain regions are deleted in Otx2 /mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–3290
    OpenUrlAbstract
    1. Alvarado-Mallart R.-M.
    (1993) Fate and potentialities of the avian mesencephalic/metencephalic neuroepithelium. J. Neurobiol 24, 1341–1355
    OpenUrlCrossRefPubMedWeb of Science
    1. Alexandre D.,
    2. Clarke J. D. W.,
    3. Oxtoby E.,
    4. Yan Y. L.,
    5. Jowett T.,
    6. Holder N.
    (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122, 735–746
    OpenUrlAbstract
    1. Ang S.-L.,
    2. Conlon R. A.,
    3. Jin O.,
    4. Rossant J.
    (1994) Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989
    OpenUrlAbstract
    1. Bally-Cuif L.,
    2. Gulisano M.,
    3. Broccoli V.,
    4. Boncinelli E.
    (1995) c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech. Dev 49, 49–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Burke A. C.,
    2. Nelson C. E.,
    3. Morgan B. A.,
    4. Tabin C.
    (1995) Hox genesand the evolution of vertebrate axial morphology. Development 121, 333–346
    OpenUrlAbstract
    1. Chedotal A.,
    2. Pourquie O.,
    3. Sotelo C.
    (1995) Initial tract formation in the brain of the chick embryo: selective expression of BEN/SC1/DM-GRASP cell adhesion molecule. Eur. J. Neurosci 7, 198–212
    OpenUrlCrossRefPubMedWeb of Science
    1. Condie B. G.,
    2. Capecchi M. R.
    (1994) Mice with targeted disruptions in the paralogous genes Hoxa-3 and Hoxd-3 reveal synergistic interactions. Nature 370, 304–307
    OpenUrlCrossRefPubMed
    1. Doniach T.,
    2. Phillips C. R.,
    3. Gerhart J. C.
    (1992) Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science 257, 542–545
    OpenUrlAbstract/FREE Full Text
    1. Doniach T.
    (1993) Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system. J. Neurobiol 24, 1256–1275
    OpenUrlCrossRefPubMedWeb of Science
    1. Eyal-Giladi H.
    (1954) Dynamic aspects of neural induction. Arch. Biol 65, 180–259
    OpenUrl
    1. Frasch M.,
    2. Xiaowei C.,
    3. Lufkin T.
    (1995) Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121, 957–974
    OpenUrlAbstract
    1. Fraser S.,
    2. Keynes R.,
    3. Lumsden A.
    (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restriction. Nature 344, 431–435
    OpenUrlCrossRefPubMed
    1. Gale E.,
    2. Prince V.,
    3. Lumsden A.,
    4. Clarke J.,
    5. Holder N.,
    6. Maden M.
    (1996) Late effects of retinoic acid on neural crest and aspects of rhombomere identity. Development 122, 783–793
    OpenUrlAbstract
    1. Gaunt S. J.,
    2. Strachan S.
    (1994) Forward spreading in the establishment of a Vertebrate Hox expression boundary: the expression domain separates into anterior and posterior zones, and the spread occurs across implanted glass barriers. Dev. Dynam 199, 229–240
    OpenUrlCrossRefPubMedWeb of Science
    1. Grapin-Botton A.,
    2. Bonnin M.-A.,
    3. McNaughton L. A.,
    4. Krumlauf R.,
    5. Le Douarin N. M.
    (1995) Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121, 2707–2721
    OpenUrlAbstract
    1. Guthrie S.,
    2. Muchamore I.,
    3. Kuroiwa A.,
    4. Marshall H.,
    5. Krumlauf R.,
    6. Lumsden A.
    (1992) Neurectodermal autonomy of Hox-2. 9 expression reaveled by rhombomere transpositions. Nature 356, 157–159
    OpenUrlCrossRefPubMed
    1. Hamburger V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morphol 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Henrique D.,
    2. Adam J.,
    3. Myat A.,
    4. Chitnis A.,
    5. Lewis J.,
    6. Ish-Horowicz D.
    (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790
    OpenUrlCrossRefPubMed
    1. Itasaki N.,
    2. Sharpe L.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 16, 487–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Kessel M.
    (1993) Reversal of axonal pathways from rhombomere-3 correlates with extra Hox expression domains. Neuron 10, 379–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Krumlauf R.
    (1994) Hox genes in vertebrate development. Cell 78, 191–201
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuratani S. C.,
    2. Eichele G.
    (1993) Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development 117, 105–117
    OpenUrlAbstract/FREE Full Text
    1. Mangold O.
    (1933) Über die Induktionfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwiss 21, 761–766
    OpenUrlCrossRefWeb of Science
    1. Manley N. R.,
    2. Capecchi M. R.
    (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003
    OpenUrlAbstract
    1. Marin F.,
    2. Puelles L.
    (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev. Biol 163, 19–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Marshall H.,
    2. Studer M.,
    3. Pöpperl H.,
    4. Aparicio S.,
    5. Kuroiwa A.,
    6. Brenner S.,
    7. Krumlauf R.
    (1994) A conserve retinoic acid responsed element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571
    OpenUrlCrossRefPubMed
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces the transformation of r2/3 into r4/5 identity. Nature 360, 737–741
    OpenUrlCrossRefPubMedWeb of Science
    1. Martinez S.,
    2. Marin F.,
    3. Nieto M. A.,
    4. Puelles L.
    (1996) Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech. Dev 51, 289–303
    1. McGinnis W.,
    2. Krumlauf R.
    (1992) Homeobox genes and axial patterning. Cell 68, 283–302
    OpenUrlCrossRefPubMedWeb of Science
    1. Morisson A.,
    2. Chaudhuri C.,
    3. Ariza-McNaughton L.,
    4. Muchamore I.,
    5. Kuroiwa A.,
    6. Krumlauf R.
    (1995) Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mech. Dev 53, 47–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Morriss-Kay G. M.,
    2. Murphy P.,
    3. Hill R. E.,
    4. Davidson D. R.
    (1991) Effects of retinoic acid excess on expression of Hox-2. 9 and of Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 10, 2985–2995
    OpenUrlPubMedWeb of Science
    1. Nieuwkoop P. D.
    (1952) Activation and organization of the central nervous system in amphibians I. Induction and activation. J. Exp. Zool 120, 1–32
    OpenUrlCrossRef
    1. Nieuwkoop P. D.
    (1952) Activation and induction of the central nervous system in amphibians. II. Differentiation and organization. J. Exp. Zool 120, 33–81
    OpenUrlCrossRef
    1. Nieuwkoop P. D.
    (1952) Activation and organization of the central nervous system in amphibians. III. Synthesis of a new working hypothesis. J. Exp. Zool 120, 83–108
    OpenUrlCrossRef
    1. Nieuwkoop P. D.,
    2. Nitgevecht G. V.
    (1954) Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in Urodeles. J. Embryol. Exp. Morph 2, 175–193
    OpenUrlWeb of Science
    1. Nonchev S.,
    2. Vesque C.,
    3. Maconochie M.,
    4. Seitanidou T.,
    5. Ariza-McNaughton L.,
    6. Frain M.,
    7. Marshall H.,
    8. Sham M. H.,
    9. Krumlauf R.,
    10. Charnay P.
    (1996) Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122, 543–554
    OpenUrlAbstract
    1. Pannese M.,
    2. Polo C.,
    3. Andreazzoli M.,
    4. Vignali R.,
    5. Kablar B.,
    6. Barsacchi G.,
    7. Boncinelli E.
    (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707–720
    OpenUrlAbstract
    1. Popperl H.,
    2. Bienz M.,
    3. Studer M.,
    4. Chan S. K.,
    5. Aparicio S.,
    6. Brenner S.,
    7. Mann R. S.,
    8. Krumlauf R.
    (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042
    OpenUrlCrossRefPubMedWeb of Science
    1. Pourquie O.,
    2. Coltey M.,
    3. Thomas J. L.,
    4. Le Douarin N. M.
    (1990) A widely distributed antigen developmentally regulated in the nervous system. Development 109, 743–752
    OpenUrlAbstract/FREE Full Text
    1. Prince V.,
    2. Lumsden A.
    (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–923
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945–958
    OpenUrlAbstract
    1. Schubert F. R.,
    2. Nieselt-Struwe K.,
    3. Gruss P.
    (1993) The Antennapedia-type homeobox genes have evolved from three precursors separated early in metazoan evolution. Proc. Natl. Acad. Sci USA 90, 143–147
    OpenUrlAbstract/FREE Full Text
    1. Sham M. H.,
    2. Vesque C.,
    3. Nonchev S.,
    4. Marshall H.,
    5. Frain M.,
    6. Dasgupta R.,
    7. Whiting J.,
    8. Wilkinson D.,
    9. Charnay P.,
    10. Krumlauf R.
    (1993) The zinc finger gene Krox20 regulates HoxB2 (Hox2. 8) during hindbrain segmentation. Cell 72, 183–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Studer M.,
    2. Popperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Sundin O. H.,
    2. Eichele G.
    (1990) A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev 4, 1267–1276
    OpenUrlAbstract/FREE Full Text
    1. Sundin O. H.,
    2. Eichele G.
    (1992) An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114, 841–852
    OpenUrlAbstract
    1. Zhang M.,
    2. Kim H.-J.,
    3. Marshall H.,
    4. Gendron-Maguire M.,
    5. Lucas D. A.,
    6. Baron A.,
    7. Gudas L. J.,
    8. Gridley T.,
    9. Krumlauf K.,
    10. Grippo J. F.
    (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120, 2431–2442
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group
A. Grapin-Botton, M.A. Bonnin, N.M. Douarin Le
Development 1997 124: 849-859;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group
A. Grapin-Botton, M.A. Bonnin, N.M. Douarin Le
Development 1997 124: 849-859;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Activation and repression by the C-terminal domain of Dorsal
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The people behind the papers – George Britton and Aryeh Warmflash

George and Aryeh

First author George Britton and his supervisor Aryeh Warmflash discuss their new Development paper in which they apply advanced in vitro culturing techniques to investigate embryonic ectoderm patterning.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


Primer – Principles and applications of optogenetics in developmental biology

Schematic demonstrating the approaches to controlling protein activity using optogenetics.

Protein function can be controlled by light using optogenetic techniques. In their new Primer, Stefano De Renzis and his colleagues in Heidelberg provide an overview of the most commonly used optogenetic tools and their application in developmental biology.


preLights – Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation

Sundar Naganathan

preLighter Sundar Naganathan explains his selected preprint by Vikas Trivedi, Benjamin Steventon and their co-workers on pescoids, a new in vitro model system to study early zebrafish embryogenesis.


Spotlight – Can laboratory model systems instruct human limb regeneration?

An extract from a schematic demonstrating the possible pipeline for how discovery in lab model systems can influence applications for regenerative therapies.

One of the most challenging objectives of tissue regeneration research is regrowth of a lost or amputated limb. Here, Ben Cox, Maximina Yun and Kenneth Poss outline the research avenues yet to be explored to move closer to this capstone achievement.


Articles of interest in our sister journals

Tox4 modulates cell fate reprogramming

Lotte Vanheer, Juan Song, Natalie De Geest, Adrian Janiszewski, Irene Talon, Caterina Provenzano, Taeho Oh, Joel Chappell, Vincent Pasque
Journal of Cell Science

Drosophila melanogaster: a simple system for understanding complexity

Stephanie E. Mohr, Norbert Perrimon
Disease Models & Mechanisms

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992