Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2
A. Streit, S. Sockanathan, L. Perez, M. Rex, P.J. Scotting, P.T. Sharpe, R. Lovell-Badge, C.D. Stern
Development 1997 124: 1191-1202;
A. Streit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Sockanathan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Perez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Rex
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.J. Scotting
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.T. Sharpe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Lovell-Badge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.D. Stern
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The response to neural induction depends on the presence of inducing signals and on the state of competence of the responding tissue. The epiblast of the chick embryo loses its ability to respond to neural induction by the organizer (Hensen's node) between stages 4 and 4+. We find that the pattern of expression of the L5(220) antigen closely mirrors the changes in competence of the epiblast in time and in space. For the first time, we describe an experiment that can extend the period of neural competence: when L5(220) expression is maintained beyond its normal time by implanting HGF/SF secreting cells, the competence to respond to Hensen's node grafts is retained. The host epiblast forms a non-regionalized neural tube, which expresses the pan-neural marker SOX-2 (a Sry-related transcription factor) but not any region-specific markers for the forebrain, hindbrain or spinal cord. Although HGF/SF secreting cells can mimic signals from Hensen's node that maintain L5 expression, they cannot rescue the ability of the node to induce anterior structures (which is normally lost after stage 4). The ectoderm may acquire stable neural characteristics during neural induction by going through a hierarchy of states: competence, neuralization and regionalization. Our findings allow us to start to define these different states at a molecular level, and show that the competence to respond to neural induction is not entirely autonomous to the responding cells, but can be regulated by extracellular signalling molecules.

REFERENCES

    1. Álvarez I. S.,
    2. Schoenwolf G. C.
    (1991) Patterns of neuroepithelial cell rearrangement during avian neurulation are established independently of notochordal inductive interactions. Dev. Biol 143, 78–92
    OpenUrlCrossRefPubMed
    1. Bally-Cuif L.,
    2. Alvarado-Mallart R. M.,
    3. Darnell D. K.,
    4. Wassef M.
    (1992) Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. Development 115, 999–1009
    OpenUrlAbstract
    1. Bellairs R.
    (1959) The development of the nervous system in chick embryos, studied by electron microscopy. J. Embryol. exp. Morph 7, 94–115
    OpenUrlPubMed
    1. Blum M.,
    2. Gaunt S. J.,
    3. Cho K. W. Y.,
    4. Steinbeisser H.,
    5. Blumberg B.,
    6. Bittner D.,
    7. De Robertis E. M.
    (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69, 1097–1106
    OpenUrlCrossRefPubMedWeb of Science
    1. Chavrier P.,
    2. Zerial M.,
    3. Lemaire P.,
    4. Almendral J.,
    5. Bravo R.,
    6. Charnay P.
    (1988) A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J 7, 29–35
    OpenUrlPubMedWeb of Science
    1. Coffman C. R.,
    2. Skoglund P.,
    3. Harris W. A.,
    4. Kintner C. R.
    (1993) Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659–671
    OpenUrlCrossRefPubMedWeb of Science
    1. Collignon J.,
    2. Sockanathan S.,
    3. Hacker A.,
    4. Cohen-Tannoudji M.,
    5. Norris D.,
    6. Rastan S.,
    7. Stevanovic M.,
    8. Goodfellow P. N.,
    9. Lovell-Badge R.
    (1996) A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 506–520
    OpenUrl
    1. Crossley P. H.,
    2. Martínez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68
    OpenUrlCrossRefPubMed
    1. Dias M. S.,
    2. Schoenwolf G. C.
    (1990) Formation of ectopic neuroepithelium in chick blastoderms: age related capacities for induction and self-differentiation following transplantation of quail Hensen's nodes. Anat. Rec 229, 437–448
    OpenUrl
    1. Fan C. M.,
    2. Tessier-Lavigne M.
    (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186
    OpenUrlCrossRefPubMedWeb of Science
    1. Gallera J.
    (1970) Difference de la reactivite à l'inducteur neurogene entre l'ectoblaste de l'aire opaque et celui de l'aire pellucide chez le poulet. Experientia 26, 1353–1354
    OpenUrlCrossRefPubMed
    1. Gallera J.
    (1971) Primary induction in birds. Adv. Morph 9, 149–180
    OpenUrlPubMed
    1. Gallera J.,
    2. Ivanov I.
    (1964) La competence neurogene du feuillet externe du blastoderme de Poulet en fonction du facteur ‘temps’. J. Embryol. exp. Morph 12, 693–711
    OpenUrlPubMed
    1. Gallera J.,
    2. Nicolet G.
    (1969) Le pouvoir inducteur de l'endoblaste presomptif contenu dans la ligne primitive jeune de poulet. J. Embryol. exp. Morph 21, 105–118
    OpenUrlPubMed
    1. Godsave S. F.,
    2. Slack J. M. W.
    (1991) Single cell analysis of mesoderm formation in the Xenopus embryo. Development 111, 523–530
    OpenUrlAbstract
    1. Grapin-Botton A.,
    2. Bonnin M. A.,
    3. McNaughton L. A.,
    4. Krumlauf R.,
    5. Le Douarin N.
    (1995) Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121, 2707–2721
    OpenUrlAbstract
    1. Gurdon J. B.
    (1987) Embryonic induction—molecular prospects. Development 99, 285–306
    OpenUrlPubMedWeb of Science
    1. Hamburger V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morph 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatta K.,
    2. Takahashi Y.
    (1996) Secondary axis induction by heterospecific organizers in zebrafish. Dev. Dynam 205, 183–195
    OpenUrlCrossRefPubMed
    1. Hemmati-Brivanlou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 238–295
    OpenUrl
    1. Itasaki N.,
    2. Ichijo H.,
    3. Hama L.,
    4. Matsuno T.,
    5. Nakamura H.
    (1991) Establishment of rostrocaudal polarity in rectal primordium: engrailed expression and subsequent rectal polarity. Development 113, 1133–1144
    OpenUrlAbstract
    1. Itasaki N.,
    2. Sharpe J.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 16, 487–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Izpisúa-Belmonte J. C.,
    2. De Robertis E. M.,
    3. Storey K. G.,
    4. Stern C. D.
    (1993) The homeobox gene goosecoid and the origin of the organizer cells in the early chick blastoderm. Cell 74, 645–659
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson R. L.,
    2. Laufer E.,
    3. Riddle R. D.,
    4. Tabin C.
    (1994) Ectopic expression of sonic hedgehog alters dorsal-ventral patterning of somites. Cell 7, 9–.
    OpenUrl
    1. Kamachi Y.,
    2. Sockanathan S.,
    3. Liu Q.,
    4. Breitman M.,
    5. Lovell-Badge R.,
    6. Kondoh H.
    (1995) Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J 14, 3510–3519
    OpenUrlPubMedWeb of Science
    1. Kengaku M.,
    2. Okamoto H.
    (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121–3130
    OpenUrlAbstract
    1. Kintner C. R.,
    2. Dodd J.
    (1991) Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction. Development 113, 1495–1505
    OpenUrlAbstract
    1. Lamb T. M.,
    2. Harland R. M.
    (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121, 3627–3636
    OpenUrlAbstract
    1. Lamb T. M.,
    2. Knecht A. K.,
    3. Smith W. C.,
    4. Stachel S. E.,
    5. Economides A. N.,
    6. Stahl N.,
    7. Yancopoulos G. D.,
    8. Harland R. M.
    (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713–718
    OpenUrlAbstract/FREE Full Text
    1. Launay C.,
    2. Fromentoux V.,
    3. Shi D. L.,
    4. Boucaut J. C.
    (1996) A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869–880
    OpenUrlAbstract
    1. McGrew L. L.,
    2. Lai C. J.,
    3. Moon R. T.
    (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev. Biol 172, 337–342
    OpenUrlCrossRefPubMedWeb of Science
    1. Martínez S.,
    2. Wassef M.,
    3. Alvarado-Mallart R. M.
    (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981
    OpenUrlCrossRefPubMedWeb of Science
    1. Messier P. E.
    (1969) Effects of-mercaptoethanol on the fine structure of the neural plate cells of the chick embryo. J. Embryol. exp. Morph 21, 309–329
    OpenUrlPubMed
    1. Munsterberg A. E.,
    2. Lassar A. B.
    (1995) Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHlH gene expression in the somite. Development 121, 651–660
    OpenUrlAbstract
    1. Nakamura H.,
    2. Itasaki N.,
    3. Matsuno T.
    (1994) Rostrocaudal polarity formation of chick optic tectum. Int. J. Dev. Biol 38, 281–286
    OpenUrlPubMed
    1. New D. A. T.
    (1955) A new technique for the cultivation of the chick embryo in vitro. J. Embryol. exp. Morph 3, 326–331
    OpenUrl
    1. Nieuwkoop P. D.,
    2. Boterenbrood E. C.,
    3. Kremer A.,
    4. Bloesma F. F. S. N.,
    5. Hoessels E. L. M. J.,
    6. Meyer G.,
    7. Verheyen F. J.
    (1952) Activation and organization of the central nervous system in amphibians. J. exp. Zool 120, 1–108
    OpenUrlPubMed
    1. Nieuwkoop P. D.,
    2. Nigtevecht G. V.
    (1954) Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. J. Embryol. exp. Morph 2, 175–193
    OpenUrlPubMed
    1. Oppenheimer J. M.
    (1936) Structures developed in amphibians by implantation of living fish organizer. Proc. Soc. Exp. Biol. Med 34, 461–463
    OpenUrlAbstract/FREE Full Text
    1. Otte A. P.,
    2. McGrew L. L.,
    3. Olate J.,
    4. Nathanson N. M.,
    5. Moon R. T.
    (1992) Expression and potential functions of G-protein subunits in embryos of Xenopuslaevis. Development 116, 141–146
    OpenUrlAbstract
    1. Otte A. P.,
    2. Moon R. T.
    (1992) Protein kinase C isozymes have distinct roles in neural induction and competence in Xenopus. Cell 68, 1021–1029
    OpenUrlCrossRefPubMedWeb of Science
    1. Pannett C. A.,
    2. Compton A.
    (1924) The cultivation of tissues in saline embryonic juice. Lancet 20, 6–.
    OpenUrlCrossRef
    1. Pituello F.,
    2. Homburger V.,
    3. Saint-Jeannet J. P.,
    4. Audigier Y.,
    5. Bockaert J.,
    6. Duprat A. M.
    (1991) Expression of the guanine nucleotide-binding protein G0correlates with the state of neural competence in the amphibian embryo. Dev. Biol 145, 311–322
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts C.,
    2. Platt M.,
    3. Streit A.,
    4. Schachner M.,
    5. Stern C. D.
    (1991) The L5 epitope: an early marker for neural induction in the chick embryo and its involvement in inductive interactions. Development 112, 959–970
    OpenUrlAbstract
    1. Sasai Y.,
    2. Lu B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1995) Regulation of neural induction by the Chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.
    (1985) Shaping and bending of the avian neuroepithelium: morphometric analysis. Dev. Biol 109, 127–139
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.
    (1992) Morphological and fate mapping studies of the paranodal and postnodal levels of the neural plate during chick neurulation. Anat. Rec 233, 281–290
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.
    (1994) Formation and patterning of the avian neuroaxis: one dozen hypotheses. Ciba Foundation Symposium 181, 25–38
    OpenUrlPubMed
    1. Servetnick M.,
    2. Grainger R. M.
    (1991) Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Development 112, 177–188
    OpenUrlAbstract
    1. Stern C. D.,
    2. Ireland G. W.
    (1981) An integrated experimental study of endoderm formation in avian embryos. Anat. Embryol 163, 245–263
    OpenUrlCrossRefPubMed
    1. Stern C. D.,
    2. Ireland G. W.,
    3. Herrick S.,
    4. Gherardi E.,
    5. Gray J.,
    6. Perryman M.,
    7. Stoker M.
    (1990) Epithelial scatter factor and development of the chick embryonic axis. Development 110, 1271–1284
    OpenUrlAbstract/FREE Full Text
    1. Stoker M.,
    2. Gherardi E.,
    3. Perryman M.,
    4. Gray J.
    (1987) Scatter factor is a vibroblast-derived modulator of epithelial cell mobility. Nature 327, 239–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Storey K. G.,
    2. Crossley J. M.,
    3. De Robertis E. M.,
    4. Norris W. E.,
    5. Stern C. D.
    (1992) Neural induction and regionalisation in the chick embryo. Development 114, 729–741
    OpenUrlAbstract
    1. Storey K. G.,
    2. Selleck M. A. J.,
    3. Stern C. D.
    (1995) Induction by different subpopulations of cells in Hensen's node. Development 121, 417–428
    OpenUrlAbstract
    1. Streit A.,
    2. Faissner A.,
    3. Gehrig B.,
    4. Schachner M.
    (1990) Isolation and biochemical characterization of a neural proteoglycan expressing the L5 carbohydrate epitope. J. Neurochem 55, 1494–1506
    OpenUrlCrossRefPubMedWeb of Science
    1. Streit A.,
    2. Thery C.,
    3. Stern C. D.
    (1994) Of mice and frogs. Trends Genet 10, 181–183
    OpenUrlCrossRefPubMed
    1. Streit A.,
    2. Stern C. D.,
    3. Thery C.,
    4. Ireland G. W.,
    5. Aparicio S.,
    6. Sharpe M. J.,
    7. Gherardi E.
    (1995) A role for HGF/SF in neural induction and its expression in Hensen's node during gastrulation. Development 121, 813–824
    OpenUrlAbstract
    1. Streit A.,
    2. Yuen C. T.,
    3. Loveless R. W.,
    4. Lawson A. M.,
    5. Finne J.,
    6. Schmitz B.,
    7. Feizi T.,
    8. Stern C. D.
    (1996) The Lexcarbohydrate sequence is recognized by antibody to L5, a functional antigen in early neural development. J. Neurochem 6, 6–.
    OpenUrl
    1. Thery C.,
    2. Sharpe M. J.,
    3. Batley S. J.,
    4. Stern C. D.,
    5. Gherardi E.
    (1995) Expression of HGF/SF, HGFl/MSP, and c-met suggests new functions during early chick development. Dev. Genet 17, 90–101
    OpenUrlCrossRefPubMedWeb of Science
    1. Turner D. L.,
    2. Weintraub H.
    (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8, 1434–1447
    OpenUrlAbstract/FREE Full Text
    1. Uwanogho D.,
    2. Rex M.,
    3. Cartwright E. J.,
    4. Pearl G.,
    5. Healy C.,
    6. Scotting P. J.,
    7. Sharpe P. T.
    (1995) Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev 4, 9–.
    OpenUrl
    1. Waddington C. H.
    (1934) Experiments on embryonic induction. J. exp. Biol 11, 211–227
    OpenUrl
    1. Waddington C. H.
    (1936) Organizers in mammalian development. Nature 138, 125–.
    OpenUrl
    1. Waddington C. H.,
    2. Waterman A. J.
    (1933) The development in vitro of young rabbit embryos. J. Anat 67, 356–370
    OpenUrl
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Woodside G. L.
    (1937) The influence of host age on induction in the chick blastoderm. J. Exp. Biol 75, 259–281
    OpenUrl
    1. Yamada T.,
    2. Placzek M.,
    3. Tanaka H.,
    4. Dodd J.,
    5. Jessell T. M.
    (1991) Control of cell pattern in the developing nervous-system: polarizing activity of the floor plate and notochord. Cell 64, 635–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Yu R. T.,
    2. McKeown M.,
    3. Evans R. M.,
    4. Umesono K.
    (1994) Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 370, 375–379
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2
A. Streit, S. Sockanathan, L. Perez, M. Rex, P.J. Scotting, P.T. Sharpe, R. Lovell-Badge, C.D. Stern
Development 1997 124: 1191-1202;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2
A. Streit, S. Sockanathan, L. Perez, M. Rex, P.J. Scotting, P.T. Sharpe, R. Lovell-Badge, C.D. Stern
Development 1997 124: 1191-1202;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992