Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos
L. Lemaire, T. Roeser, J.C. Izpisua-Belmonte, M. Kessel
Development 1997 124: 1443-1452;
L. Lemaire
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Roeser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Izpisua-Belmonte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Kessel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We report the isolation and characterization of a chicken gene, GSX, containing a homeobox similar to that of the goosecoid gene. The structure of the GSX gene and the deduced GSX protein are highly related to the previously described goosecoid gene. The two homeodomains are 74% identical. In the first few hours of chick embryogenesis, the expression pattern of GSX is similar to GSC, in the posterior margin of the embryo and the young primitive streak. Later during gastrulation, expression of the two genes segregate. GSC is expressed in the anterior part of the primitive streak, then in the node, and finally in the pre-chordal plate. GSX is expressed in the primitive streak excluding the node, and then demarcating the early neural plate around the anterior streak and overlying the pre-chordal plate. We demonstrate that the GSX-positive part of the primitive streak induces gastrulation, while the GSC-expressing part induces neurulation. After full extension of the streak, the fate of cells now characterized by GSX is to undergo neurulation, while those expressing GSC undergo gastrulation. We discuss the effect of a duplicated basic goosecoid identity for the generation of a chordate nervous system in ontogeny and phylogeny.

REFERENCES

    1. Ang S. L.,
    2. Jin O.,
    3. Rhinn M.,
    4. Daigle N.,
    5. Stevenson L.,
    6. Rossant J.
    (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–52
    OpenUrlAbstract
    1. Auffray C.,
    2. Rougeon F.
    (1980) Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem 107, 303–314
    OpenUrlPubMedWeb of Science
    1. Beddington R. S.
    (1994) Induction of a second neural axis by the mouse node. Development 120, 613–20
    OpenUrlAbstract
    1. Berleth T.,
    2. Burri M.,
    3. Thoma G.,
    4. Bopp D.,
    5. Richstein S.,
    6. Frigerio G.,
    7. Noll M.,
    8. Nusslein-Volhard C.
    (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7, 1749–1756
    OpenUrlPubMedWeb of Science
    1. Blum M.,
    2. De Robertis E. M.,
    3. Kojis T.,
    4. Heinzmann C.,
    5. Klisak I.,
    6. Geissert D.,
    7. Sparkes R. S.
    (1994). Molecular cloning of the human homeobox gene goosecoid (GSC) and mapping of the gene to human chromosome 14q32.1. Genomics 21, 388–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Blum M.,
    2. Gaunt J.,
    3. Cho K. W. Y.,
    4. Steinbeisser H.,
    5. Blumberg B.,
    6. Bittner D.,
    7. De Robertis E. M.
    (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69, 1097–1106
    OpenUrlCrossRefPubMedWeb of Science
    1. Blumberg B.,
    2. Wright V. E.,
    3. De Robertis E. M.,
    4. Cho K. W. Y.
    (1991) Organizer-specific homeobox genes in Xenopus laevis embryos. Science 253, 194–196
    OpenUrlAbstract/FREE Full Text
    1. Buckler A.,
    2. Chang D. D.,
    3. Graw S. L.,
    4. Brook J. D.,
    5. Haber D. A.,
    6. Sharp P. A.,
    7. Housman D. E.
    (1991) Exon amplification: A strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009
    OpenUrlAbstract/FREE Full Text
    1. Cheyette B. N. R.,
    2. Green P. J.,
    3. Martin K.,
    4. Garren H.,
    5. Hartenstein V.,
    6. Zipurski S. L.
    (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12, 977–996
    OpenUrlCrossRefPubMedWeb of Science
    1. Cho K. W. Y.,
    2. Blumberg B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1991) Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120
    OpenUrlCrossRefPubMedWeb of Science
    1. Conklin E. G.
    (1932) The embryology of Amphioxus. J. Morph 54, 69–151
    OpenUrlCrossRef
    1. Dias M. S.,
    2. Schoenwolf G. C.
    (1990) Formation of ectopic neuroepithelium in chick blastoderms: age related capacities for induction and self-differentiation following transplantation of quail Hensen`s node. Anat. Rec 229, 437–448
    OpenUrl
    1. Eyal-Giladi H.,
    2. Kochav S.
    (1976) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol 49, 321–337
    OpenUrlCrossRefPubMedWeb of Science
    1. Finkelstein R.,
    2. Smouse D.,
    3. Capaci T. M.,
    4. Spradling A. C.,
    5. Perrimon N.
    (1990) The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4, 1516–1527
    OpenUrlAbstract/FREE Full Text
    1. Gallera J.,
    2. Nicolet G.
    (1969) Le pouvoir inducteur de l'endoblaste presomptif contenu dans la ligne primitive jeune de poulet. J. Embryol. Exp. Morph 21, 105–18
    OpenUrlPubMed
    1. Gallera J.
    (1971) Primary induction in birds. Advances in Morphogenesis 9, 149–80
    OpenUrlPubMed
    1. Garcia-Martinez V.,
    2. Alvarez I. S.,
    3. Schoenwolf G. C.
    (1993) Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J. Exp. Zool 267, 431–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Gawantka V.,
    2. Delius H.,
    3. Hirschfeld K.,
    4. Blumenstock C.,
    5. Niehrs C.
    (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14, 6268–79
    OpenUrlPubMedWeb of Science
    1. Goriely A.,
    2. Stella M.,
    3. Coffinier C.,
    4. Kessler D.,
    5. Mailhos C.,
    6. Dessain S.,
    7. Desplan C.
    (1996) A functional homologue of goosecoid in Drosophila. Development 122, 1641–1650
    OpenUrlAbstract
    1. Hahn M.,
    2. Jäckle H.
    (1996) Drosophila goosecoid participates in neural development but not in body axis formation. EMBO J 15, 3077–3084
    OpenUrlPubMedWeb of Science
    1. Hamburger V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morph 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Hermesz E.,
    2. Mackem S.,
    3. Mahon K. A.
    (1996) Rpx -a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development 122, 41–52
    OpenUrlAbstract
    1. Holland P. W.,
    2. Garcia-Fernandez J.,
    3. Williams N. A.,
    4. Sidow A.
    (1994) Gene duplications and the origins of vertebrate development. Development 1994, 125–33
    1. Izpisúa-Belmonte J. C.,
    2. De Robertis E. M.,
    3. Storey K. G.,
    4. Stern C. D.
    (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659
    OpenUrlCrossRefPubMedWeb of Science
    1. Jin Y.,
    2. Hoskins R.,
    3. Horvitz H. R.
    (1994) Control of type-D GABAergicneuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–3
    OpenUrlCrossRefPubMed
    1. Kessel M.,
    2. Gruss P.
    (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67, 89–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Kispert A.,
    2. Ortner H.,
    3. Cooke J.,
    4. Herrmann B. G.
    (1995) The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev. Biol 168, 406–15
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamonerie T.,
    2. Tremblay J. J.,
    3. Lanctot C.,
    4. Therrien M.,
    5. Gauthier Y.,
    6. Drouin J.
    (1996) Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 10, 1284–1295
    OpenUrlAbstract/FREE Full Text
    1. Le Douarin N.
    (1969) Particularites du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularites comme ‘marquage biologique'dans les recherches sur les interactions tissulaires et les migrations cellulaires au course de l'ontogenese. Bull. Biol. Fr. Belg 103, 435–452
    OpenUrlPubMed
    1. Lyons I.,
    2. Parsons L. M.,
    3. Hartley L.,
    4. Li R.,
    5. Andrews J. E.,
    6. Robb L.,
    7. Harvey R. P.
    (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9, 1654–1666
    OpenUrlAbstract/FREE Full Text
    1. Niehrs C.,
    2. Keller R.,
    3. Cho K. W. Y.,
    4. De Robertis E. M.
    (1993) The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491–503
    OpenUrlCrossRefPubMedWeb of Science
    1. Oliver G.,
    2. Mailhos A.,
    3. Wehr R.,
    4. Copeland N. G.,
    5. Jenkins N. A.,
    6. Gruss P.
    (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–55
    OpenUrlAbstract
    1. Onichtchouk D.,
    2. Gawantka V.,
    3. Dosch R.,
    4. Delius H.,
    5. Hirschfeld K.,
    6. Blumenstock C.,
    7. Niehrs C.
    (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controling dorsoventral patterning of Xenpous mesoderm. Development 122, 3045–3053
    OpenUrlAbstract
    1. Psychoyos D.,
    2. Stern C. D.
    (1996) Fates and migratory routes of primitive streak cells in the chick embryo. Development 122, 1523–34
    OpenUrlAbstract
    1. Ranson M.,
    2. Tickle C.,
    3. Mahon K. A.,
    4. Mackem S.
    (1995) Gnot1, a member of a new homeobox gene subfamily, is expressed in a dynamic, region-specific domain along the proximodistal axis of the developing limb. Mech. Dev 51, 17–30
    OpenUrlCrossRefPubMed
    1. Rivera-Perez J. A.,
    2. Mallo M.,
    3. Gendron-Maguire M.,
    4. Gridley T.,
    5. Behringer R. R.
    (1995) Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121, 3005–3012
    OpenUrlAbstract
    1. Rudnick D.
    (1935) Regional restriction of potencies in the chick during embryogenesis. J. Exp. Zool 71, 83–99
    OpenUrlCrossRef
    1. Ruiz i Altaba A.
    (1993) Induction and axial patterning of the neural plate: planar and vertical signals. J. Neurobiol 24, 1276–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Placzek M.,
    3. Baldassare M.,
    4. Dodd J.,
    5. Jessell T. M.
    (1995) Early stages of notochord and floor plate development in the chick embryo defined by normal and induced expression of HNF-3 beta. Dev. Biol 170, 299–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Sanger F.,
    2. Nicklen S.,
    3. Coulsen A. R.
    (1977) DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467
    OpenUrlAbstract/FREE Full Text
    1. Sasai Y.,
    2. Lu B.,
    3. Steinbeisser H.,
    4. Geissert D.,
    5. Gont L. K.,
    6. De Robertis E. M.
    (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–90
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasai Y.,
    2. Lu B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336
    OpenUrlCrossRefPubMed
    1. Seleiro E. A. P.,
    2. Connolly D. J.,
    3. Cooke J.
    (1996) Early developmental expression and experimental axis determination by chicken Vg1 gene. Curr. Biol 6, 1476–1486
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Acampora D.,
    3. Mallamaci A.,
    4. Stornaiuolo A.,
    5. D'Apice M. R.,
    6. Nigro V.,
    7. Boncinelli E.
    (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12, 2735–2747
    OpenUrlPubMedWeb of Science
    1. Spratt N. T.
    (1952) Localization of the prospective neural plate in the early chick blastoderm. J. Exp. Zool 120, 109–130
    OpenUrlCrossRef
    1. Stachel S. E.,
    2. Grunwald D. J.,
    3. Myers P. Z.
    (1993) Lithium perturbationand goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274
    OpenUrlAbstract
    1. Stein S.,
    2. Kessel M.
    (1995) A homeobox gene involved in node, notochord and neural plate formation of chick embryos. Mech. Dev 49, 37–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Stein S.,
    2. Niβ K.,
    3. Kessel M.
    (1996) Differential activation of the clustered homeobox genes CNOT2 and CNOT1 during notogenesis in the chick. Dev. Biol 180, 519–533
    OpenUrlCrossRefPubMedWeb of Science
    1. Storey K. G.,
    2. Crossley J. M.,
    3. De Robertis E. M.,
    4. Norris W. E.,
    5. Stern C. D.
    (1992) Neural induction and regionalisation in the chick embryo. Development 114, 729–741
    OpenUrlAbstract
    1. Thomas P.,
    2. Beddington R.
    (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Current Biol 6, 1487–1496
    OpenUrlCrossRefPubMedWeb of Science
    1. Treisman J.,
    2. Gönczy P.,
    3. Vashishita M.,
    4. Harris E.,
    5. Desplan C.
    (1989) A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell 59, 553–562
    OpenUrlCrossRefPubMedWeb of Science
    1. Weinstein D. C.,
    2. Ruiz i Altaba A.,
    3. Chen W. S.,
    4. Hoodless P.,
    5. Prezioso V. R.,
    6. Jessell T. M.,
    7. Darnell J. E., Jr
    (1994) The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamada G.,
    2. Mansouri A.,
    3. Torres M.,
    4. Stuart E. T.,
    5. Blum M.,
    6. Schultz M.,
    7. De Robertis E. M.,
    8. Gruss P.
    (1995) Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121, 2917–2922
    OpenUrlAbstract
    1. Zaraisky A. G.,
    2. Ecochard V.,
    3. Kazanskaya O. V.,
    4. Lukyanov S. A.,
    5. Fesenko I. V.,
    6. Duprat A. M.
    (1995) The homeobox-containing gene XANF-1 may control development of the Spemann organizer. Development 121, 3839–47
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos
L. Lemaire, T. Roeser, J.C. Izpisua-Belmonte, M. Kessel
Development 1997 124: 1443-1452;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos
L. Lemaire, T. Roeser, J.C. Izpisua-Belmonte, M. Kessel
Development 1997 124: 1443-1452;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992