Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis
F. Reifers, H. Bohli, E.C. Walsh, P.H. Crossley, D.Y. Stainier, M. Brand
Development 1998 125: 2381-2395;
F. Reifers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Bohli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.C. Walsh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.H. Crossley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.Y. Stainier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Brand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We describe the isolation of zebrafish Fgf8 and its expression during gastrulation, somitogenesis, fin bud and early brain development. By demonstrating genetic linkage and by analysing the structure of the Fgf8 gene, we show that acerebellar is a zebrafish Fgf8 mutation that may inactivate Fgf8 function. Homozygous acerebellar embryos lack a cerebellum and the midbrain-hindbrain boundary organizer. Fgf8 function is required to maintain, but not initiate, expression of Pax2.1 and other marker genes in this area. We show that Fgf8 and Pax2.1 are activated in adjacent domains that only later become overlapping, and activation of Fgf8 occurs normally in no isthmus embryos that are mutant for Pax2.1. These findings suggest that multiple signaling pathways are independently activated in the midbrain-hindbrain boundary primordium during gastrulation, and that Fgf8 functions later during somitogenesis to polarize the midbrain. Fgf8 is also expressed in a dorsoventral gradient during gastrulation and ectopically expressed Fgf8 can dorsalize embryos. Nevertheless, acerebellar mutants show only mild dorsoventral patterning defects. Also, in spite of the prominent role suggested for Fgf8 in limb development, the pectoral fins are largely unaffected in the mutants. Fgf8 is therefore required in development of several important signaling centers in the zebrafish embryo, but may be redundant or dispensable for others.

REFERENCES

    1. Acampora D.,
    2. Avantaggito V.,
    3. Tuorto F.,
    4. Simeone A.
    (1997) Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124, 3639–3650
    OpenUrlAbstract
    1. Alvarado-Mallart R. M.
    (1993) Fate and potentialities of the avian mesencephalic/metencephalic neuroepithelium. J. Neurobiol 24, 1341–1355
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S. L.,
    2. Rossant J.
    (1993) Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118, 139–149
    OpenUrlAbstract
    1. Bally-Cuif L.,
    2. Alvarado-Mallart R. M.,
    3. Darnell D. K.,
    4. Wassef M.
    (1992) Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. Development 115, 999–1009
    OpenUrlAbstract
    1. Bally-Cuif L.,
    2. Wassef M.
    (1995) Determination events in the nervous system of the vertebrate embryo. Curr Opin Genet Dev 5, 450–458
    OpenUrlCrossRefPubMedWeb of Science
    1. Basilico C.,
    2. Moscatelli D.
    (1992) The FGF family of growth factors and oncogenes. Adv. Cancer Res 59, 115–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Blunt A. G.,
    2. Lawshe A.,
    3. Cunningham M. L.,
    4. Seto M. L.,
    5. Ornitz D. M.,
    6. MacArthur C. A.
    (1997) Overlapping expression and redundant activation of mesenchymal fibroblast growth factor (FGF) receptors by alternatively spliced FGF-8 ligands. J. Biol. Chem 272, 3733–3738
    OpenUrlAbstract/FREE Full Text
    1. Brand M.,
    2. Heisenberg C.-P.,
    3. Jiang Y.-J.,
    4. Beuchle D.,
    5. Lun K.,
    6. van Eeden F. J. M.,
    7. Furutani-Seiki M.,
    8. Granato M.,
    9. Haffter P.,
    10. Hammerschmidt M.,
    11. Kane D. A.,
    12. Kelsh R. N.,
    13. Mullins M. C.,
    14. Odenthal J.,
    15. Nusslein-Volhard C.
    (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179–190
    OpenUrlAbstract/FREE Full Text
    1. Bueno D.,
    2. Skinner J.,
    3. Abud H.,
    4. Heath J. K.
    (1996) Spatial and temporal relationships between Shh, Fgf4, and Fgf8 gene expression at diverse signalling centers during mouse development. Dev. Dyn 207, 291–299
    OpenUrlCrossRefPubMed
    1. Chen J. N.,
    2. van Eeden F. J. M.,
    3. Warren K. S.,
    4. Cahin A.,
    5. Nusslein-Volhard C.,
    6. Haffter P.,
    7. Fishman M. C.
    (1997) Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373–4382
    OpenUrlAbstract
    1. Cohn M. J.,
    2. Izpisua Belmonte J. C.,
    3. Abud H.,
    4. Heath J. K.,
    5. Tickle C.
    (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746
    OpenUrlCrossRefPubMedWeb of Science
    1. Cohn M. J.,
    2. Tickle C.
    (1996) Limbs: a model for pattern formation within the vertebrate body plan. Trends in Genetics 12, 253–257
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martin G. R.
    (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451
    OpenUrlAbstract
    1. Crossley P. H.,
    2. Martinez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68
    OpenUrlCrossRefPubMed
    1. Crossley P. H.,
    2. Minowada G.,
    3. MacArthur C. A.,
    4. Martin G. R.
    (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136
    OpenUrlCrossRefPubMedWeb of Science
    1. Danielian P. S.,
    2. McMahon A. P.
    (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334
    OpenUrlCrossRefPubMedWeb of Science
    1. Darnell D. K.,
    2. Schoenwolf G. C.
    (1997) Vertical induction of engrailed-2 and other region-specific markers in the early chick embryo. Dev. Dyn 209, 45–58
    OpenUrlCrossRefPubMed
    1. Deng C. X.,
    2. Wynshaw Boris A.,
    3. Shen M. M.,
    4. Daugherty C.,
    5. Ornitz D. M.,
    6. Leder P.
    (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes. Dev 8, 3045–3057
    OpenUrlAbstract/FREE Full Text
    1. Devoto S. H.,
    2. Melancon E.,
    3. Eisen J. S.,
    4. Westerfield M.
    (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371–3380
    OpenUrlAbstract
    1. Dornseifer P.,
    2. Takke C.,
    3. Campos-Ortega J. A.
    (1997) Overexpression of a zebrafish homologue of the Drosophila neurogenic gene Delta perturbs differentiation of primary neurons and somite development. Mech. Dev 63, 159–171
    OpenUrlCrossRefPubMedWeb of Science
    1. Ekker M.,
    2. Wegner J.,
    3. Akimenko M. A.,
    4. Westerfield M.
    (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116, 1001–1010
    OpenUrlAbstract/FREE Full Text
    1. Feldman B.,
    2. Poueymirou W.,
    3. Papaioannou V. E.,
    4. DeChiara T. M.,
    5. Goldfarb M.
    (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249
    OpenUrlAbstract/FREE Full Text
    1. Furthauer M.,
    2. Thisse C.,
    3. Thisse B.
    (1997) A role for Fgf-8 in the dorsoventral patterning of the zebrafish gastrula. Development 124, 4253–4264
    OpenUrlAbstract
    1. Gardner C. A.,
    2. Barald K. F.
    (1991) The cellular environment controls the expression of engrailed-like protein in the cranial neuroepithelium of quail-chick chimeric embryos. Development 113, 1037–1048
    OpenUrlAbstract
    1. Gont L. K.,
    2. Steinbeisser H.,
    3. Blumberg B.,
    4. de Robertis E. M.
    (1993) Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119, 991–1004
    OpenUrlAbstract
    1. Grieshammer U.,
    2. Minowada G.,
    3. Pisenti J. M.,
    4. Abbott U. K.,
    5. Martin G. R.
    (1996) The chick limbless mutation causes abnormalities in limb bud dorsal-ventral patterning: implications for the mechanism of apical ridge formation. Development 122, 3851–3861
    OpenUrlAbstract
    1. Griffin K.,
    2. Patient R.,
    3. Holder N.
    (1995) Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 121, 2983–2994
    OpenUrlAbstract
    1. Halpern M. E.,
    2. Ho R. K.,
    3. Walker C.,
    4. Kimmel C. B.
    (1993) Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111
    OpenUrlCrossRefPubMedWeb of Science
    1. Hammerschmidt M.,
    2. Nusslein-Volhard C.
    (1993) The expression of a zebrafish gene homologous to Drosophila snail suggests a conserved function in invertebrate and vertebrate gastrulation. Development 119, 1107–1118
    OpenUrlAbstract
    1. Hatta K.,
    2. Bremiller R.,
    3. Westerfield M.,
    4. Kimmel C. B.
    (1991) Diversity of expression of engrailed-like antigens in zebrafish. Development 112, 821–32
    OpenUrlAbstract
    1. Hebert J. M.,
    2. Rosenquist T.,
    3. Gotz J.,
    4. Martin G. R.
    (1994) FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78, 1017–1025
    OpenUrlCrossRefPubMedWeb of Science
    1. Heikinheimo M.,
    2. Lawshe A.,
    3. Shackleford G. M.,
    4. Wilson D. B.,
    5. MacArthur C. A.
    (1994) Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech. Dev 48, 129–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Hrabe de Angelis M.,
    2. McIntyre J. n.,
    3. Gossler A.
    (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721
    OpenUrlCrossRefPubMedWeb of Science
    1. Joly J. S.,
    2. Joly C.,
    3. Schulte-Merker S.,
    4. Boulekbache H.,
    5. Condamine H.
    (1993) The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119, 1261–1275
    OpenUrlAbstract
    1. Kane D. A.,
    2. Kimmel C. B.
    (1993) The zebrafish midblastula transition. Development 119, 447–456
    OpenUrlAbstract
    1. Khoury G.,
    2. Gruss P.,
    3. Dahr R.,
    4. Lai C. J.
    (1979) Processing and expression of early SV40 mRNA: a role for RNA conformation in splicing. Cell 18, 85–92
    OpenUrlCrossRefPubMed
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullmann B.,
    5. Schilling T. F.
    (1995) Stages of embryonic development of the zebrafish. Dev. Dyn 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Krauss S.,
    2. Johansen T.,
    3. Korzh V.,
    4. Fjose A.
    (1991) Expression of the Zebrafish Paired Box Gene pax<ZF-B > During Early Neurogenesis. Development 113, 1193–1206
    OpenUrlAbstract
    1. Krauss S.,
    2. Concordet J. P.,
    3. Ingham P. W.
    (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Kroll K. L.,
    2. Amaya E.
    (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183
    OpenUrlAbstract
    1. Kuwada J. Y.,
    2. Bernhardt R. R.,
    3. Chitnis A. B.
    (1990) Pathfinding by identified growth cones in the spinal cord of zebrafish embryos. J. Neurosci 10, 1299–1308
    OpenUrlAbstract
    1. Lorenzi M. V.,
    2. Long J. E.,
    3. Miki T.,
    4. Aaronson S. A.
    (1995) Expression cloning, developmental expression and chromosomal localization of fibroblast growth factor-8. Oncogene 10, 2051–2055
    OpenUrlPubMedWeb of Science
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1123
    OpenUrlAbstract/FREE Full Text
    1. MacArthur C. A.,
    2. Lawshe A.,
    3. Xu J.,
    4. Santos Ocampo S.,
    5. Heikinheimo M.,
    6. Chellaiah A. T.,
    7. Ornitz D. M.
    (1995) FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121, 3603–3613
    OpenUrlAbstract
    1. Mahmood R.,
    2. Bresnick J.,
    3. Hornbruch A.,
    4. Mahony C.,
    5. Morton N.,
    6. Colquhoun K.,
    7. Martin P.,
    8. Lumsden A.,
    9. Dickson C.,
    10. Mason I.
    (1995) A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol 5, 797–806
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansour S. L.,
    2. Goddard J. M.,
    3. Capecchi M. R.
    (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Marin F.,
    2. Puelles L.
    (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev. Biol 163, 19–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Martinez S.,
    2. Wassef M.,
    3. Alvarado-Mallart R. M.
    (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981
    OpenUrlCrossRefPubMedWeb of Science
    1. Martinez S.,
    2. Marin F.,
    3. Nieto M. A.,
    4. Puelles L.
    (1995) Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech. Dev 51, 289–303
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon A. P.,
    2. Joyner A. L.,
    3. Bradley A.,
    4. McMahon J. A.
    (1992) The midbrain-hindbrain phenotype of Wnt-1/Wnt-1 mice results from stepwise deletion of engrailed-expressing cells by 9. 5 days postcoitum. Cell 69, 581–595
    OpenUrlCrossRefPubMedWeb of Science
    1. Meyers E. N.,
    2. Lewandoski M.,
    3. Martin G. R.
    (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet 18, 136–142
    OpenUrlCrossRefPubMedWeb of Science
    1. Millen K. J.,
    2. Wurst W.,
    3. Herrup K.,
    4. Joyner A.
    (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120, 695–706
    OpenUrlAbstract
    1. Molven A.,
    2. Njolstad P. R.,
    3. Fjose A.
    (1991) Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. EMBO J 10, 799–807
    OpenUrlPubMedWeb of Science
    1. Nakamura H.,
    2. Itasaki N.,
    3. Matsuno T.
    (1994) Rostrocaudal polarity formation of chick optic tectum. Int. J. Dev. Biol 38, 281–286
    OpenUrlPubMed
    1. Neubuser A.,
    2. Peters H.,
    3. Balling R.,
    4. Martin G. R.
    (1997) Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 90, 247–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Niswander L.
    (1997) Limb mutants: what can they tell us about normal limb development?. Curr. Op. Genet. Dev 7, 530–536
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohuchi H.,
    2. Yoshioka H.,
    3. Tanaka A.,
    4. Kawakami Y.,
    5. Nohno T.,
    6. Noji S.
    (1994) Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem. Biophys. Res. Commun 204, 882–888
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohuchi H.,
    2. Nakagawa T.,
    3. Yamamoto A.,
    4. Araga A.,
    5. Ohata T.,
    6. Ishimaru Y.,
    7. Yoshioka H.,
    8. Kuwana T.,
    9. Nohno T.,
    10. Yamasaki M.,
    11. Itoh N.,
    12. Noji S.
    (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244
    OpenUrlAbstract
    1. Ohuchi H.,
    2. Shibusawa M.,
    3. Nakagawa T.,
    4. Ohata T.,
    5. Yoshioka H.,
    6. Hirai Y.,
    7. Nohno T.,
    8. Noji S.,
    9. Kondo N.
    (1997) A chick wingless mutation causes abnormality in maintenance of Fgf8 expression in the wing apical ridge, resulting in loss of the dorsoventral boundary. Mech. Dev 62, 3–13
    OpenUrlCrossRefPubMed
    1. Ornitz D. M.,
    2. Xu J.,
    3. Colvin J. S.,
    4. McEwen D. G.,
    5. MacArthur C. A.,
    6. Coulier F.,
    7. Gao G.,
    8. Goldfarb M.
    (1996) Receptor specificity of the fibroblast growth factor family. J. Biol. Chem 271, 15292–15297
    OpenUrlAbstract/FREE Full Text
    1. Oxtoby E.,
    2. Jowett T.
    (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21, 1087–1095
    OpenUrlAbstract/FREE Full Text
    1. Padgett R. A.,
    2. Grabowski P. J.,
    3. Konarska M. M.,
    4. Seiler S.,
    5. Sharp P. A.
    (1986) Splicing of messenger RNA precursors. Ann. Rev. Biochem 55, 1119–1150
    OpenUrlCrossRefPubMedWeb of Science
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Ros M. A.,
    2. Lopez Martinez A.,
    3. Simandl B. K.,
    4. Rodriguez C.,
    5. Izpisua Belmonte J. C.,
    6. Dahn R.,
    7. Fallon J. F.
    (1996) The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122, 2319–2330
    OpenUrlAbstract
    1. Rupp R. A. W.,
    2. Snider L.,
    3. Weintraub H.
    (1994) Xenopus embryos regulatie the nuclear localization of XMyoD. Genes Dev 8, 1311–1323
    OpenUrlAbstract/FREE Full Text
    1. Schulte-Merker S.,
    2. Ho R. K.,
    3. Herrmann B. G.,
    4. Nusslein-Volhard C.
    (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032
    OpenUrlAbstract/FREE Full Text
    1. Shimamura K.,
    2. Rubenstein J. L.
    (1997) Inductive interactions directearly regionalization of the mouse forebrain. Development 124, 2709–2718
    OpenUrlAbstract
    1. Song D. L.,
    2. Chalepakis G.,
    3. Gruss P.,
    4. Joyner A. L.
    (1996) Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122, 627–635
    OpenUrlAbstract
    1. Sordino P.,
    2. van-der-Hoeven F.,
    3. Duboule D.
    (1995) Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375, 678–81
    OpenUrlCrossRefPubMed
    1. Stainier D. Y. R.,
    2. Fishman M. C.
    (1992) Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol 153, 91–101
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanaka A.,
    2. Miyamoto K.,
    3. Minamino N.,
    4. Takeda M.,
    5. Sato B.,
    6. Matsuo H.,
    7. Matsumoto K.
    (1992) Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc. Natl. Acad. Sci. USA 89, 8928–8932
    OpenUrlAbstract/FREE Full Text
    1. Thisse B.,
    2. Thisse C.,
    3. Weston J. A.
    (1995) Novel FGF receptor (Z-FGFR4) is dynamically expressed in mesoderm and neurectoderm during early zebrafish embryogenesis. Dev. Dyn 203, 377–391
    OpenUrlPubMed
    1. Thisse C.,
    2. Thisse B.,
    3. Halpern M. E.,
    4. Postlethwait J. H.
    (1994) Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol 164, 420–429
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomas K. R.,
    2. Capecchi M. R.
    (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850
    OpenUrlCrossRefPubMedWeb of Science
    1. van Eeden F. J. M.,
    2. Granato M.,
    3. Schach U.,
    4. Brand M.,
    5. Furutani-Seiki M.,
    6. Haffter P.,
    7. Hammerschmidt M.,
    8. Heisenberg C.-P.,
    9. Jiang Y.-J.,
    10. Kane D. A.,
    11. Kelsh R. N.,
    12. Mullins M. C.,
    13. Odenthal J.,
    14. Warga R. M.,
    15. Allende M. L.,
    16. Weinberg E. S.,
    17. Nusslein-Volhard C.
    (1996) Mutations affecting somite formation and patterning in the zebrafish Danio rerio. Development 123, 153–164
    OpenUrlAbstract/FREE Full Text
    1. Vogel A.,
    2. Rodriguez C.,
    3. Izpisua Belmonte J. C.
    (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750
    OpenUrlAbstract
    1. Weinberg E. S.,
    2. Allende M. L.,
    3. Kelly C. S.,
    4. Abdelhamid A.,
    5. Murakami T.,
    6. Andermann P.,
    7. Doerre O. G.,
    8. Grunwald D. J.,
    9. Riggleman B.
    (1996) Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122, 271–280
    OpenUrlAbstract
    1. Wilkinson D. G.,
    2. Bailes J. A.,
    3. McMahon A. P.
    (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50, 79–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Woo K.,
    2. Fraser S. E.
    (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121, 2595–609
    OpenUrlAbstract
    1. Woo K.,
    2. Fraser S. E.
    (1997) Specification of the zebrafish nervous system by nonaxial signals. Science 277, 254–257
    OpenUrlAbstract/FREE Full Text
    1. Wood A.
    (1982) Early pectoral fin development and morphogenesis of the apical ectodermal ridge in the killifish, Aphyosemion scheeli. Anat. Rec 204, 349–356
    OpenUrlCrossRefPubMed
    1. Wurst W.,
    2. Auerbach A. B.,
    3. Joyner A. L.
    (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075
    OpenUrlAbstract
    1. Yamaguchi T. P.,
    2. Harpal K.,
    3. Henkemeyer M.,
    4. Rossant J.
    (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8, 3032–3044
    OpenUrlAbstract/FREE Full Text
    1. Yamaguchi T. P.,
    2. Rossant J.
    (1995) Fibroblast growth factors in mammalian development. Curr. Opin. Genet. Dev 5, 485–489
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis
F. Reifers, H. Bohli, E.C. Walsh, P.H. Crossley, D.Y. Stainier, M. Brand
Development 1998 125: 2381-2395;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis
F. Reifers, H. Bohli, E.C. Walsh, P.H. Crossley, D.Y. Stainier, M. Brand
Development 1998 125: 2381-2395;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992