Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice
Q. Ding, J. Motoyama, S. Gasca, R. Mo, H. Sasaki, J. Rossant, C.C. Hui
Development 1998 125: 2533-2543;
Q. Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Motoyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Gasca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Mo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Sasaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Rossant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.C. Hui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Floor plate cells at the midline of the neural tube are specified by high-level activity of Sonic hedgehog (Shh) secreted by notochord, whereas motor neurons are thought to be specified by a lower level activity of Shh secreted in turn by floor plate cells. In Drosophila, the Gli zinc finger protein Cubitus interruptus functions as a transcription factor activating Hedgehog-responsive genes. We report that the expression of known Shh-responsive genes such as Ptc and Gli1 is downregulated in mutant mice lacking Gli2 function. Gli2 mutants fail to develop a floor plate yet still develop motor neurons, which occupy the ventral midline of the neural tube. Our results imply that Gli2 is required to mediate high level but not low level Shh activity and show that the development of motor neurons can occur in the absence of floor plate induction.

REFERENCES

    1. Akimaru H.,
    2. Chen Y.,
    3. Dai P.,
    4. Hou D.-X.,
    5. Nonaka M.,
    6. Smolik S. M.,
    7. Armstrong S.,
    8. Goodman R. H.,
    9. Ishii S.
    (1997) Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature 386, 735–738
    OpenUrlCrossRefPubMedWeb of Science
    1. Alexandre C.,
    2. Jacinto A.,
    3. Ingham P. W.
    (1996) Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the Cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev 10, 2003–2013
    OpenUrlAbstract/FREE Full Text
    1. Ang S.-L.,
    2. Rossant J.
    (1994) HNF-3is essential for node and notochord formation in mouse development. Cell 78, 561–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Aza-Blanc P.,
    2. Ramirez-Weber F.-A.,
    3. Laget M.-P.,
    4. Schwartz C.,
    5. Kornberg T. B.
    (1997) Proteolysis that is inhibited by hedeghog targets cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053
    OpenUrlCrossRefPubMedWeb of Science
    1. Burrill J.D.,
    2. Moran L.,
    3. Goulding M.D.,
    4. Saueressig H.
    (1997) PAX2 is expressed in multiple spinal cord interneurons, including a population of EN1+interneurons that require PAX6 for their development. Development 124, 4493–4503
    OpenUrlAbstract
    1. Buscher D.,
    2. Bosse B.,
    3. Heymer J.,
    4. Ruther U.
    (1997) Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development. Mech. Dev 62, 175–182
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Conlon R. A.,
    2. Herrmann B. G.
    (1993) Detection of messenger RNA by in situ hybridization to postimplantation embryo whole mounts. Methods Enzymol 225, 373–383
    OpenUrlCrossRefPubMedWeb of Science
    1. Currie P. D.,
    2. Ingham P. W.
    (1996) Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382, 452–455
    OpenUrlCrossRefPubMed
    1. Dominguez M.,
    2. Brunner M.,
    3. Hafen E.,
    4. Basler K.
    (1996) Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitius interruptus. Science 272, 1621–1625
    OpenUrlAbstract
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ekker S. C.,
    2. McGrew L. L.,
    3. Lai C.-J.,
    4. Lee J. J.,
    5. von Kessler D. P.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121, 2337–2347
    OpenUrlAbstract
    1. Epstein D. J.,
    2. Marti E.,
    3. Scott M. P.,
    4. McMahon A. P.
    (1996) Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122, 2885–2894
    OpenUrlAbstract
    1. Ericson J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessel T. M.
    (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Rashbass P.,
    3. Schedl A.,
    4. Brenner-Morton S.,
    5. Kawakami A.,
    6. van Heyningen V.,
    7. Jessell T. M.,
    8. Briscoe J.
    (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Gasca S.,
    2. Hill D.,
    3. Klingensmith J.,
    4. Rossant J.
    (1995) Characterization of a gene trap insertion into a novel gene, cordon-bleu, expressed in axial structures of the gastrulating mouse embryo. Dev. Genet 17, 141–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Goodrich L. V.,
    2. Johnson R. L.,
    3. Milenkovic L.,
    4. McMahon J. A.,
    5. Scott M. P.
    (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 10, 301–312
    OpenUrlAbstract/FREE Full Text
    1. Goulding M. D.,
    2. Chalepakis G.,
    3. Deutsch U.,
    4. Erselius J. R.,
    5. Gruss P.
    (1991) Pax-3, a novel murine DNA-binding protein expressed during early neurogenesis. EMBO J 10, 1135–1147
    OpenUrlPubMedWeb of Science
    1. Gratzner H. G.
    (1982) Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475
    OpenUrlAbstract/FREE Full Text
    1. Hammerschmidt M.,
    2. Brook A.,
    3. McMahon A. P.
    (1997) The world according to hedgehog. Trends in Genetics 13, 14–21
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatta K.
    (1992) Role of the floor plate in axonal patterning in the zebrafish CNS. Neuron 9, 629–642
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatta K.,
    2. Kimmel C.,
    3. Ho R.,
    4. Walker C.
    (1991) The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341
    OpenUrlCrossRefPubMed
    1. Hepker J.,
    2. Wang Q.-T.,
    3. Motzny C. K.,
    4. Holmgren R.,
    5. Orenic T. V.
    (1997) Drosophilacubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124, 549–558
    OpenUrlAbstract
    1. Hui C.-c.,
    2. Joyner A. L.
    (1993) A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJmutation contains an intragenic deletion of the Gli3 gene. Nature Genet 3, 241–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C.-c.,
    2. Slusarski D.,
    3. Platt K.,
    4. Holmgren R.,
    5. Joyner A.
    (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli2, and Gli3, in ectoderm-and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev. Biol 162, 402–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Chang D.,
    5. Tessier-Lavigne M.,
    6. Beachy P.,
    7. Rosenthal A.
    (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15, 35–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Stone D. M.,
    3. Dowd M.,
    4. Pitts-Meek S.,
    5. Goddard A.,
    6. Gurney A.,
    7. Rosenthal A.
    (1997) Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Kang S.,
    2. Graham J. M.,
    3. Olney A. H.,
    4. Biesecker L. G.
    (1997) GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nature Genet 15, 266–268
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J.,
    2. Platt K. A.,
    3. Censullo P.,
    4. Ruiz i Altaba A.
    (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552
    OpenUrlAbstract
    1. Liem K.F.,
    2. Tremml G.,
    3. Jessell T.M.
    (1997) A role for the roof plate and its resident TGF-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Marigo V.,
    2. Johnson R. L.,
    3. Vortkamp A.,
    4. Tabin C. J.
    (1996) Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol 180, 273–283
    OpenUrlCrossRefPubMedWeb of Science
    1. Marine J.-C.,
    2. Bellefroid E. J.,
    3. Pendeville H.,
    4. Martial J. A.,
    5. Pieler T.
    (1997) A role for Xenopus Gli-type zinc finger proteins in the earlyembryonic patterning of mesoderm and neuroectoderm. Mech. Dev 63, 211–225
    OpenUrlCrossRefPubMedWeb of Science
    1. Marti E.,
    2. Bumcrot D.,
    3. Takada R.,
    4. McMahon A.
    (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325
    OpenUrlCrossRefPubMed
    1. Marti E.,
    2. Takada R.,
    3. Bumcrot D.,
    4. Sasaki H.,
    5. McMahon A.
    (1995) Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547
    OpenUrlAbstract
    1. Masuya H.,
    2. Sagai T.,
    3. Moriwaki K.,
    4. Shiroishi T.
    (1997) Multigenic control of the localization of the zone of polarizing activity in limb morphogenesis in the mouse. Dev. Biol 182, 42–51
    OpenUrlCrossRefPubMedWeb of Science
    1. Mo R.,
    2. Freer A. M.,
    3. Zinyk D.,
    4. Crackower M. A.,
    5. Heng H. H.-Q.,
    6. Chik K. W.,
    7. Shi X.-M.,
    8. Tsui L.-C.,
    9. Cheng S. H.,
    10. Joyner A. L.,
    11. Hui C.-c.
    (1997) Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal development. Development 124, 113–123
    OpenUrlAbstract
    1. Osumi N.,
    2. Hirota A.,
    3. Ohuchi H.,
    4. Nakafuku M.,
    5. Iimura T.,
    6. Kuratani S.,
    7. Fujiwara M.,
    8. Noji S.,
    9. Eto K.
    (1997) Pax-6 is involved in the specification of hindbrain motor neuron subtype. Development 124, 2961–2972
    OpenUrlAbstract
    1. Perrimon N.
    (1995) Hedgehog and beyond. Cell 80, 517–520
    OpenUrlCrossRefPubMedWeb of Science
    1. Platt K. A.,
    2. Michaud J.,
    3. Joyner A. L.
    (1997) Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mech. Dev 62, 121–135
    OpenUrlCrossRefPubMedWeb of Science
    1. Radhakrishna U.,
    2. Wild A.,
    3. Grzeschil K.-H.,
    4. Antonaraskis S. E.
    (1997) Mutation in GLI3 in postaxial polydactyly type A. Nature Genetics 17, 269–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1996) Coexpression of HNF-3and Isl-1/2 and mixed distribution of ventral cell types in the early neural tube. Int. J. Dev. Biol 40, 1081–1088
    OpenUrlPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1997) Catching a Gli-mpse of Hedgehog. Cell 90, 193–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Cox C.,
    3. Jessell T. M.,
    4. Klar A.
    (1993) Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc. Natl. Acad. Sci. USA 90, 8268–8272
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Jessell T.M.,
    3. Roelink H.
    (1995) Restrictions to floor plate induction by hedgehog and winged-helix genes in the neural tube of frog embryos. Molec. Cell. Neurosci 6, 106–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Placzek M.,
    3. Baldassare M.,
    4. Dodd J.,
    5. Jessel T. M.
    (1995) Early stages of notochord and floor plate development in the chick embryo defined by normal and induced expression of HNF3. Dev. Biol 170, 299–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruppert J. M.,
    2. Kinzler K.W.,
    3. Wong A. J.,
    4. Bigner S. H.,
    5. Kao F.-T.,
    6. Law M. L.,
    7. Seuanez H. N.,
    8. O'Brien S. J.,
    9. Vogelstein B.
    (1988) The Gli-Kruppel family of human genes. Mol. Cell. Biol 8, 3104–3133
    OpenUrlAbstract/FREE Full Text
    1. Ruppert J. M.,
    2. Vogelstein B.,
    3. Kinzler K. W.
    (1991) The zinc finger protein GLI transform primary cells in cooperation with adenovirus E1A. Mol. Cell. Biol 11, 1724–1728
    OpenUrlAbstract/FREE Full Text
    1. Sasaki H.,
    2. Hogan B. L. M.
    (1994) HNF-3as a regulator of floor plate development. Cell 76, 103–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasaki H.,
    2. Hui C.-c.,
    3. Nakafuku M.,
    4. Kondoh H.
    (1997) A binding site for Gli proteins is essential for HNF-3 floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322
    OpenUrlAbstract
    1. Schaeren-Wiemers N.,
    2. Gerfin-Moser A.
    (1993) A single protocol to detect transcripts of various types and expression levels in neural tissues and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440
    OpenUrlCrossRefPubMedWeb of Science
    1. Schimmang T.,
    2. Lemaistre M.,
    3. Vortkamp A.,
    4. Ruther U.
    (1992) Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116, 799–804
    OpenUrlAbstract
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J.L.R.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Tanabe Y.,
    2. Jessell T. M.
    (1996) Diversity and pattern in the developing spinal cord. Science 274, 1115–1123
    OpenUrlAbstract/FREE Full Text
    1. Tanabe Y.,
    2. Roelink H.,
    3. Jessell T.
    (1995) Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation. Current Biology 5, 651–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Tremblay P.,
    2. Pituello F.,
    3. Gruss P.
    (1996) Inhibition of floor plate differentiation by Pax3: evidence from ectopic expression in transgenic mice. Development 122, 2555–2567
    OpenUrlAbstract
    1. Tsuchida T.,
    2. Ensini M.,
    3. Morton S. B.,
    4. Baldassare M.,
    5. Edlund T.,
    6. Jessell T. M.,
    7. Pfaff S. L.
    (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970
    OpenUrlCrossRefPubMedWeb of Science
    1. van Straaten H. W. M.,
    2. Hekking J. W. M.,
    3. Beursgens J. P. W. M.,
    4. Terwindt-Rouwenhorst E.,
    5. Drukker J.
    (1989) Effect of the notochord on proliferation and differentiation in the neural tube of the chick embryo. Development 107, 793–803
    OpenUrlAbstract/FREE Full Text
    1. von Ohlen T.,
    2. Lessing D.,
    3. Nusse R.,
    4. Hooper J. E.
    (1997) Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA binding protein. Proc. Natl. Acad. Sci. USA 94, 2404–2409
    OpenUrlAbstract/FREE Full Text
    1. Vortkamp A.,
    2. Gessler M.,
    3. Grzeschik K.-H.
    (1991) GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540
    OpenUrlCrossRefPubMedWeb of Science
    1. Walter C.,
    2. Gruss P.
    (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1450
    OpenUrlAbstract
    1. Walterhouse D.,
    2. Ahmed M.,
    3. Slusarski D.,
    4. Kalamaras J.,
    5. Boucher D.,
    6. Holmgren R.,
    7. Iannaccone P.
    (1993) gli, aputative zinc finger transcription factor, is expressed in a segmental pattern during normal mouse development. Dev. Dyn 196, 91–102
    OpenUrlPubMedWeb of Science
    1. Weinstein D.,
    2. Ruiz i Altaba A.,
    3. Chen W.,
    4. Hoodless P.,
    5. Prezioso V.,
    6. Jessell T.,
    7. Darnell J.
    (1994) The winged-helix transcription factor HNF-3is required for notochord development in the mouse embryo. Cell 78, 575–688
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice
Q. Ding, J. Motoyama, S. Gasca, R. Mo, H. Sasaki, J. Rossant, C.C. Hui
Development 1998 125: 2533-2543;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice
Q. Ding, J. Motoyama, S. Gasca, R. Mo, H. Sasaki, J. Rossant, C.C. Hui
Development 1998 125: 2533-2543;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992