Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain
M. Hallonet, T. Hollemann, R. Wehr, N.A. Jenkins, N.G. Copeland, T. Pieler, P. Gruss
Development 1998 125: 2599-2610;
M. Hallonet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Hollemann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Wehr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.A. Jenkins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.G. Copeland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Pieler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Gruss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The vertebrate forebrain is formed at the rostral end of the neural plate under the regulation of local and specific signals emanating from both the endomesoderm and neuroectoderm. The development of the rostral and ventral forebrain in particular was difficult to study, mainly because no specific markers are available to date. Here, we report the identification of Vax1, a novel homeobox-containing gene identified in mouse, Xenopus and human. It is closely related to members of the Not and Emx gene families, all of which are required for the formation of structures where they are expressed. In mouse and Xenopus, Vax1 expression first occurs in the rostral neural plate, in the medial anterior neural ridge and adjacent ectoderm. Later, at midgestation in the mouse and tadpole stage in Xenopus, the expression remains confined in the derivatives of this territory which differentiate into rostromedial olfactory placode, optic nerve and disc, and anterior ventral forebrain. Together, these observations suggest that Vax1 could have an early evolutionary origin and could participate in the specification and formation of the rostral and ventral forebrain in vertebrates. Comparison of the limits of the expression territory of Vax1 with that of Dlx1, Pax6 and Emx1 indicates that the corticostriatal ridge is a complex structure with distinct identifiable genetic compartments. Besides, the study of Vax1 expression in Pax6-deficient homozygous brains indicates that its regulation is independent of Pax6, although the expression patterns of these two genes appear complementary in wild-type animals. Vax1 chromosomal location is mapped at the distal end of the mouse chromosome 19, linked with that of Emx2. These two genes may have arisen by tandem duplication. The Vax1 gene is thus an interesting new tool to study the rostral ventral forebrain patterning, morphogenesis and evolution as well as the terminal differentiation of the forebrain in mouse and Xenopus.

REFERENCES

    1. Acampora D.,
    2. Mazan S.,
    3. Lallemand Y.,
    4. Avantaggiato V.,
    5. Maury M.,
    6. Simeone A.,
    7. Brûlet P.
    (1995) Forebrain and midbrain regions are deleted in Otx2 (/) mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–3290
    OpenUrlAbstract
    1. Anderson S. A.,
    2. Eisenstat D. D.,
    3. Shi L.,
    4. Rubenstein J. L. R.
    (1997) Interneuron migration from the basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476
    OpenUrlAbstract/FREE Full Text
    1. Anderson S. A.,
    2. Mengshen Q.,
    3. Bulfone A.,
    4. Eisenstat D. D.,
    5. Meneses J.,
    6. Pedersen R.,
    7. Rubenstein J. L. R.
    (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S. L.,
    2. Conlon R. A.,
    3. Jin O.,
    4. Rossant J.
    (1994) Positive and negative signals from mesoderm regulate the expression of mouse Otx 2 in ectoderm explants. Development 120, 2979–2989
    OpenUrlAbstract
    1. Ang S. L.,
    2. Jin O.,
    3. Rhinn M.,
    4. Daigle N.,
    5. Stevenson L.,
    6. Rossant J.
    (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–252
    OpenUrlAbstract
    1. Ang S. L.,
    2. Rossant J.
    (1993) Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118, 139–149
    OpenUrlAbstract
    1. Bayer S. A.,
    2. Altman J.
    (1987) Development of the preoptic area: Time and site of origin, migratory routes, and settling patterns of its neurons. J. Comp. Neurol 265, 65–95
    OpenUrlCrossRefPubMedWeb of Science
    1. Bayer S. A.,
    2. Altman J.
    (1987) Directions in neurogenic gradients and pattern of anatomical connections in the telencephalon. Prog. Neurobiol 29, 57–106
    OpenUrlCrossRefPubMedWeb of Science
    1. Bayer S. A.,
    2. Altman J.
    (1991) Development of the endopiriform nucleus and the claustrum in the rat brain. Neuroscience 45, 391–412
    OpenUrlCrossRefPubMedWeb of Science
    1. Boek R.,
    2. Kolakofsky D.
    (1994) Position +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO J 13, 3608–3617
    OpenUrlPubMedWeb of Science
    1. Boulder Commitee
    (1970) Embryonic Vertebrate Central System: Revised Terminology. Anat. Rec 166, 257–262
    OpenUrlCrossRefPubMed
    1. Bouwmeester T.,
    2. Kim S.-H.,
    3. Sasai Y.,
    4. Lu B.,
    5. De Robertis E.
    (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601
    OpenUrlCrossRefPubMed
    1. Brunelli S.,
    2. Faiella A.,
    3. Capra V.,
    4. Nigro V.,
    5. Simeone A.,
    6. Cama A.,
    7. Boncinelli E.
    (1996) Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat. Genet 12, 94–6
    OpenUrlCrossRefPubMedWeb of Science
    1. Bulfone A.,
    2. Puelles L.,
    3. Porteus M. H.,
    4. Frohman M. A.,
    5. Martin G. R.,
    6. Rubenstein J. L. R.
    (1993). Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci 13, 3155–3172
    OpenUrlAbstract
    1. Caric D.,
    2. Gooday D.,
    3. Hill R. E.,
    4. McConnell S. K.,
    5. Price D. J.
    (1997) Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124, 5087–5096
    OpenUrlAbstract
    1. Cavener D. R.,
    2. Ray S. C.
    (1991) Eukaryotic start and stop translation sites. Nucl. Acids Res 19, 3185–3192
    OpenUrlAbstract/FREE Full Text
    1. Copeland N. G.,
    2. Jenkins A. G.
    (1991) Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet 7, 113–118
    OpenUrlPubMedWeb of Science
    1. Couly G. F.,
    2. Le Douarin N. M.
    (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev. Biol 120, 198–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Dale J. K.,
    2. Vesque C.,
    3. Lints T. J.,
    4. Sampath T. K.,
    5. Furley A.,
    6. Dodd J.,
    7. Placzek M.
    (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Dalton D.,
    2. Chadwick R.,
    3. McGinnis W.
    (1989) Expression and embryonic function of empty spiracles: a Drosophila homeobox gene withtwo patterning functions on the anterior-posterior axis of the embryo. Genes Dev 3, 1940–1956
    OpenUrlAbstract/FREE Full Text
    1. De Carlos J. A.,
    2. Lopez-Mascaraque L.,
    3. Valverde F.
    (1995) The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 68, 1167–1178
    OpenUrlCrossRefPubMed
    1. De Carlos J. A.,
    2. Lopez-Mascaraque L.,
    3. Valverde F.
    (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci 16, 6146–6156
    OpenUrlAbstract/FREE Full Text
    1. Doniach T.
    (1993) Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system. J. Neurobiol 24, 1256–1275
    OpenUrlCrossRefPubMedWeb of Science
    1. Eagleson G.,
    2. Ferreiro B.,
    3. Harris W. A.
    (1995) Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J. Neurobiol 28, 146–158
    OpenUrlCrossRefPubMed
    1. Eagleson G. W.,
    2. Harris W. A.
    (1990) Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J. Neurobiol 21, 427–440
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of sonic hedgehog signaling required for the specification of motoneuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Fentress J. C.,
    2. Stanfield B. B.,
    3. Cowan W. M.
    (1981) Observations on the development of the striatum in mice and rats. Anat. Embryol 163, 275–298
    OpenUrlCrossRefPubMed
    1. Finkelstein R.,
    2. Boncinelli E.
    (1994) From fly head to mammalian forebrain: the story of otd and Otx. Trends Genet 10, 310–315
    OpenUrlCrossRefPubMedWeb of Science
    1. Fishell G.
    (1997) Regionalization in the mammalian telensephalon. Curr. Opin. Neurobiol 7, 62–69
    OpenUrlCrossRefPubMedWeb of Science
    1. Gans C.
    (1989) Stages in the origin of vertebrates: analysis by means of scenarios. Biol. Rev. Camb. Philos. Soc 64, 221–268
    OpenUrlPubMed
    1. Glinka A.,
    2. Wei W.,
    3. Onichtchouk D.,
    4. Blumenstock C.,
    5. Niehrs C.
    (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519
    OpenUrlCrossRefPubMed
    1. Halliday A. L.,
    2. Cepko C. L.
    (1992) Generation and migration of cells in the developing striatum. Neuron 9, 15–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Harland R. M.
    (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36, 685–695
    OpenUrlPubMed
    1. Hirth F.,
    2. Therianos S.,
    3. Loop T.,
    4. Gehring W. J.,
    5. Reichert H.,
    6. Furukubo-Tokunaga K.
    (1995) Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron 15, 769–778
    OpenUrlCrossRefPubMedWeb of Science
    1. Hogan B. L. M.,
    2. Horsburgh G.,
    3. Cohen J.,
    4. Hetherington C. M.,
    5. Fisher G.,
    6. Lyon M. F.
    (1986) Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. exp. Morph 97, 95–110
    OpenUrlPubMedWeb of Science
    1. Hollemann T.,
    2. Bellefroid E.,
    3. Pieler T.
    (1998) The Xenopus homologue of the Drosophila gene tailless has a function in early eye development. Development 125, 2425–2432
    OpenUrlAbstract
    1. Houart C.,
    2. Westerfield M.,
    3. Wilson S. W.
    (1998) A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391, 788–792
    OpenUrlCrossRefPubMed
    1. Israel D. I.
    (1993) A PCR-based method for high stringency screening of DNA libraries. Nucleic Acid Res 21, 2627–2631
    OpenUrlAbstract/FREE Full Text
    1. Juan T. S.-C.,
    2. McNiece I. K.,
    3. Argento J. M.,
    4. Jenkins N. A.,
    5. Gilbert D. J.,
    6. Copland N. G.
    (1997) Identification and mapping of Casp7, a cystein protease resembling CPP32beta, interleukin-1beta converting enzyme, and CED-3. Genomics 40, 86–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Kastury K.,
    2. Druck T.,
    3. Huebner K.,
    4. Barletta C.,
    5. Acampora D.,
    6. Simeone A.,
    7. Faiella A.,
    8. Boncinelli E.
    (1994) Chromosome locations of human EMX and OTX genes. Genomics 22, 41–45
    OpenUrlCrossRefPubMedWeb of Science
    1. Kozak M.
    (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292
    OpenUrlCrossRefPubMedWeb of Science
    1. Krumlauf R.,
    2. Marshall H.,
    3. Studer M.,
    4. Nonchev S.,
    5. Sham M. H.,
    6. Lumsden A.
    (1994) Hox homeobox genes and regionalisation of the nervous system. J. Neurobiol 24, 1328–1340
    1. Lufkin T.
    (1996) Transcriptional control of Hox genes in vertebrate nervous system. Curr. Opin. Genet. Dev 6, 575–580
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Mastick G. S.,
    2. Davis N. M.,
    3. Andrews G. L.,
    4. Easter S. S., Jr
    (1997) Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124, 1985–1997
    OpenUrlAbstract
    1. Matsuo I.,
    2. Kuratani S.,
    3. Kimura C.,
    4. Takeda N.,
    5. Aizawa S.
    (1995) Mouse Otx 2 functions in the formation and patterning of rostral head. Genes Dev 9, 2646–2658
    OpenUrlAbstract/FREE Full Text
    1. Matsuo T.,
    2. Osumi-Yamashita N.,
    3. Noji S.,
    4. Ohuchi H.,
    5. Koyama E.,
    6. Myokai F.,
    7. Matsuo N.,
    8. Taniguchi S.,
    9. Doi H.,
    10. Ninomiya Y.,
    11. Fujiwara M.,
    12. Watanabe T.,
    13. Eto K.
    (1993) A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nature Genet 3, 299–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Oliver G.,
    2. Mailhos A.,
    3. Wehr R.,
    4. Copeland N. G.,
    5. Jenkins N. A.,
    6. Gruss P.
    (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–55
    OpenUrlAbstract
    1. Pannese M.,
    2. Polo C.,
    3. Andreazzoli M.,
    4. Vignali R.,
    5. Kablar B.,
    6. Barsacchi G.,
    7. Boncinelli E.
    (1995) The Xenopus homologue of Otx 2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707–720
    OpenUrlAbstract
    1. Pellegrini M.,
    2. Mansouri A.,
    3. Simeone A.,
    4. Boncinelli E.,
    5. Gruss P.
    (1996) Dentate gyrus formation requires Emx2. Development 122, 3893–3898
    OpenUrlAbstract
    1. Pellier V.,
    2. Astic L.
    (1994) Histochemical and immunocytochemical study of the migration of neurons from the rat olfactory placode. Cell Tissue Research 275, 587–598
    OpenUrlCrossRefPubMed
    1. Price M.,
    2. Lemaistre M.,
    3. Pischetola M.,
    4. Di Lauro R.,
    5. Duboule D.
    (1991) A mouse gene related to Distal-less shows a restricted expression in the developing forebrain. Nature 351, 748–751
    OpenUrlCrossRefPubMed
    1. Puelles L.,
    2. Rubenstein J. L. R.
    (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests a neuromeric organization. Trends Neurosci 16, 472–479
    OpenUrlCrossRefPubMedWeb of Science
    1. Qiu M.,
    2. Anderson S.,
    3. Chen S.,
    4. Meneses J. J.,
    5. Hevner R.,
    6. Kuwana E.,
    7. Pedersen R. A.,
    8. Rubenstein J. L. R.
    (1996) Mutation of the Emx-1 homeobox gene disruptd the corpus callosum. Dev. Biol 178, 174–178
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts R. C.
    (1967) Small-eyes, a new dominant mutant in the mouse. Genet. Res 9, 121–122
    1. Ruiz i Altaba A.
    (1994) Pattern formation in the vertebrate neural plate. Trends Neurosci 17, 233–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Saha M. S.,
    2. Grainger R. M.
    (1992) A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus. Neuron 8, 1003–1014
    OpenUrlCrossRefPubMedWeb of Science
    1. Schwanzel-Fukuda M.,
    2. Crossin K. L.,
    3. Pfaff D. W.,
    4. Bouloux P. M. G.,
    5. Hardelin J. P.,
    6. Petit C.
    (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J. Comp. Neurol 366, 547–557
    OpenUrlCrossRefPubMedWeb of Science
    1. Shawlot W.,
    2. Behringer R. R.
    (1995) Requirement for Lim1 in head-organizer function. Nature 374, 425–430
    OpenUrlCrossRefPubMed
    1. Shimamura K.,
    2. Rubinstein J. L. R.
    (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718
    OpenUrlAbstract
    1. Simeone A.,
    2. Acampora D.,
    3. Gulisano M.,
    4. Stornaiuolo A.,
    5. Boncinelli E.
    (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Acampora D.,
    3. Mallamaci A.,
    4. Stornaiuolo A.,
    5. D'Apice M. R.,
    6. Nigro V.,
    7. Boncinelli E.
    (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12, 2735–2747
    OpenUrlPubMedWeb of Science
    1. Simeone A.,
    2. Gulisano M.,
    3. Acampora D.,
    4. Stornaiuolo A.,
    5. Rambaldi M.,
    6. Boncinelli E.
    (1992) Two vertebrate homeobox genes related to the Drosophilaempty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J 11, 2541–2550
    OpenUrlPubMedWeb of Science
    1. St-Onge L.,
    2. Sosa-Pineda B.,
    3. Chowdhury K.,
    4. Mansouri A.,
    5. Gruss P.
    (1997) Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 387, 406–409
    OpenUrlCrossRefPubMed
    1. Stein S.,
    2. Kessel M.
    (1995) A homeobox gene involved in node, notochord and neural plate formation of chick embryos. Mech. Dev 49, 37–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Stein S.,
    2. Niss K.,
    3. Kessel M.
    (1996) Differential activation of the clustered homeobox genes CNOT2 and CNOT1 during notogenesis in the chick. Dev. Biol 180, 519–533
    OpenUrlCrossRefPubMedWeb of Science
    1. Stoykova A.,
    2. Fritsch R.,
    3. Walther C.,
    4. Gruss P.
    (1996) Forebrain patterning defects in Small eye mutant mice. Development 122, 3453–3465
    OpenUrlAbstract
    1. Stoykova A.,
    2. Götz M.,
    3. Gruss P.,
    4. Price J.
    (1997) Pax6 -dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124, 3765–3777
    OpenUrlAbstract
    1. Stoykova A.,
    2. Gruss P.
    (1994) Roles of Pax -genes in developing and adult brain as suggested by expression patterns. J. Neurosci 14, 1395–1412
    OpenUrlAbstract
    1. Szele F. G.,
    2. Cepko C. L.
    (1996) A subset of clones in the chick telencephalon arranged in rostrocaudal arrays. Current Biol 6, 1685–1690
    OpenUrlCrossRefPubMedWeb of Science
    1. Talbot W. S.,
    2. Trevarrow B.,
    3. Halpern M. E.,
    4. Melby A. E.,
    5. Farr G.,
    6. Postlethwait J. H.,
    7. Jowett T.,
    8. Kimmel C. B.,
    9. Kimelman D.
    (1995) A homeobox gene essential for zebrafish notochord development. Nature 378, 150–157
    OpenUrlCrossRefPubMed
    1. Thomas P.,
    2. Beddington R.
    (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate of the mouse embryo. Current Biol 6, 1487–1496
    OpenUrlCrossRefPubMedWeb of Science
    1. Thor T.
    (1995) The genetics of brain development: Conserved programs in flies and mice. Neuron 15, 975–977
    OpenUrlCrossRefPubMedWeb of Science
    1. von Dassow G.,
    2. Schmidt J. E.,
    3. Kimelman D.
    (1993) Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. Genes Dev 7, 355–366
    OpenUrlAbstract/FREE Full Text
    1. Walldorf U.,
    2. Gehring W. J.
    (1992) Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J 11, 2247–2259
    OpenUrlPubMedWeb of Science
    1. Walther C.,
    2. Gruss P.
    (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449
    OpenUrlAbstract
    1. Warren N.,
    2. Price D. J.
    (1997) Roles of Pax-6 in murine diencephalic development. Development 124, 1573–1582
    OpenUrlAbstract
    1. Wijnholds J.,
    2. Chowdhury K.,
    3. Wehr R.,
    4. Gruss P.
    (1995) Segment specific expression of the neuronatin gene during early hindbrain development. Dev. Biol 171, 73–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Yoshida M.,
    2. Suda Y.,
    3. Matsuo I.,
    4. Miyamoto N.,
    5. Takeda N.,
    6. Kuratani S.,
    7. Aizawa S.
    (1997) Emx1 and Emx2 functions in development of dorsal telencephalon. Development 124, 101–111
    OpenUrlAbstract
    1. Zheng L. M.,
    2. Pfaff D. W.,
    3. Schwanzel-Fukuda M.
    (1992) Electron microscopic identification of luteinizing hormone-releasing hormone-immunoreactive neurons in the medial olfactory placode and basal forebrain of embryonic mice. Neuroscience 46, 407–418
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain
M. Hallonet, T. Hollemann, R. Wehr, N.A. Jenkins, N.G. Copeland, T. Pieler, P. Gruss
Development 1998 125: 2599-2610;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain
M. Hallonet, T. Hollemann, R. Wehr, N.A. Jenkins, N.G. Copeland, T. Pieler, P. Gruss
Development 1998 125: 2599-2610;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
  • Drosophila puckered regulates Fos/Jun levels during follicle cell morphogenesis
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992