Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors
T. Kunisada, H. Yoshida, H. Yamazaki, A. Miyamoto, H. Hemmi, E. Nishimura, L.D. Shultz, S. Nishikawa, S. Hayashi
Development 1998 125: 2915-2923;
T. Kunisada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Yoshida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Yamazaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Miyamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Hemmi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Nishimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.D. Shultz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Nishikawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Hayashi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mutations at the murine dominant white spotting (KitW) and steel (MgfSl) loci, encoding c-Kit receptor kinase and its ligand respectively, exert developmental defects on hematopoietic cells, melanocytes, germ cells and interstitial cells of Cajal. The expression patterns of steel factor (SLF) observed in the skin and gonads suggest that SLF mediates a migratory or a chemotactic signal for c-Kit-expressing stem cells (melanocyte precursors and primordial germ cells). By targeting expression of SLF to epidermal keratinocytes in mice, we observed extended distribution of melanocytes in a number of sites including oral epithelium and footpads where neither melanocytes nor their precursors are normally detected. In addition, enlarged pigmented spots of KitW and other spotting mutant mice were observed in the presence of the SLF transgene. These results provide direct evidence that SLF stimulates migration of melanocytes in vivo. We also present data suggesting that SLF does not simply support survival and proliferation of melanocytes but also promotes differentiation of these cells. Unexpectedly, melanocyte stem cells independent of the c-Kit signal were maintained in the skin of the SLF transgenic mice. After the elimination of c-Kit-dependent melanoblasts by function-blocking anti-c-Kit antibody, these stem cells continued to proliferate and differentiate into mature melanocytes. These melanoblasts are able to migrate to cover most of the epidermis after several months. The SLF transgenic mice described in this report will be useful in the study of melanocyte biology.

REFERENCES

    1. Anderson D. J.
    (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 13, 276–280
    OpenUrlCrossRefPubMedWeb of Science
    1. Bedell M. A.,
    2. Bra C. I.,
    3. Evans E. P.,
    4. Copeland N. G.,
    5. Jenkins N. A.,
    6. Donovan nnan P. J.
    (1995) DNA rearrangements located over 100 kb 5of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev 9, 455–470
    OpenUrlAbstract/FREE Full Text
    1. Benett D.
    (1956) Developmental analysis of a mutation with pleiotropic effects in the mouse. J. Morphol 98, 199–233
    OpenUrlCrossRef
    1. Bennett D. C.
    (1993) Genetics, development, and malignancy of melanocytes. International Rev. Cytol 146, 191–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Bertolotto C.,
    2. Busca R.,
    3. Abbe P.,
    4. Bille K.,
    5. Aberdam E.,
    6. Ortonne J. P.,
    7. Ballotti R.
    (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol 18, 694–702
    OpenUrlAbstract/FREE Full Text
    1. Besmer P.,
    2. Manova K.,
    3. Duttlinger R.,
    4. Huang E. J.,
    5. Packer A.,
    6. Gyssler C.,
    7. Bachvarova R.
    (1993) The kit -ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Development 119, 125–137
    OpenUrl
    1. Blume-Jensen P.,
    2. Claesson-Welsh L.,
    3. Siegbahn A.,
    4. Zsebo K. M.,
    5. Westermark B.,
    6. Heldin C.-I.
    (1991) Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J 10, 4121–4128
    OpenUrlPubMedWeb of Science
    1. Brannan C. I.,
    2. Bedell M. A.,
    3. Resnic J. L.,
    4. Eppig J. J.,
    5. Handel M. A.,
    6. Williams D. E.,
    7. Lyman S. D.,
    8. Donovan P. J.,
    9. Jenkins N. A.,
    10. Copeland N. G.
    (1992) Developmental abnormalities in Steel 17H mice result from a splicing defect in the steel factor cytoplasmic tail. Genes Dev 6, 1832–1842
    OpenUrlAbstract/FREE Full Text
    1. Bronner-Fraser M.
    (1993) Segregation of cell lineage in the neural crest. Curr. Opin. Genet. Dev 3, 641–647
    OpenUrlCrossRefPubMed
    1. Broudy V. C.
    (1997) Stem cell factor and hematopoiesis. Blood 90, 1345–1364
    OpenUrlFREE Full Text
    1. Bueher M.,
    2. Mclaren A.,
    3. Bartley A.,
    4. Darling S.
    (1993) Proliferation and migration of primodial germ cells in We/We mouse embryos. Dev. Dyn 198, 182–189
    OpenUrlPubMedWeb of Science
    1. Costa J. J.,
    2. Demetri G. D.,
    3. Harrist T. J.,
    4. Dvorak A. M.,
    5. Hayes D. F.,
    6. Merica E. A.,
    7. Menchaca D.,
    8. Gringeri A. J.,
    9. Schwartz L. B.,
    10. Galli S. J.
    (1996) Recombinant human stem cell factor (KIT ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J. Exp. Med 183, 2681–2686
    OpenUrlAbstract/FREE Full Text
    1. Erickson C. A.,
    2. Perris R.
    (1993) The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest. Dev. Biol 168, 529–548
    OpenUrl
    1. Galli S. J.,
    2. Zsebo K. M.,
    3. Geissler E. N.
    (1993) The kit ligand, Stem cell factor. Advances Immunol 55, 1–96
    OpenUrl
    1. Harrist T. J.,
    2. Costa J. J.,
    3. Demetri G. D.,
    4. Dvorak A. M.,
    5. Hayes D. F.,
    6. Merica E. A.,
    7. Menchaca D.,
    8. Gringeri A. J.,
    9. Galli S. J.
    (1995) Recombinant human stem cell factor (SCF, c-kit ligand) promotes melanocyte hyperplasia and activation in vivo. Lab. Invest 72, 48–.
    OpenUrl
    1. Hayashi S.-I.,
    2. Kunisada T.,
    3. Ogawa M.,
    4. Yamaguchi K.,
    5. Nishikawa S.-I.
    (1991) Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucleic Acids Res 19, 1267–1271
    OpenUrlAbstract/FREE Full Text
    1. Hemesath T. J.,
    2. Price E. R.,
    3. Takemoto C.,
    4. Badalian T.,
    5. Fisher D. E.
    (1998) MAPK links the transcription factor Microphthalmia to c-Kit signaling in melanocytes. Nature 391, 298–301
    OpenUrlCrossRefPubMed
    1. Hirobe T.
    (1984) Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods. Anat. Rec 208, 589–594
    OpenUrlCrossRefPubMed
    1. Hirobe T.
    (1992) Control of melanocyte proliferation and differentiation in the mouse epidermis. Pigment cell Res., 5, 1–11
    OpenUrlCrossRefPubMedWeb of Science
    1. Horikawa T.,
    2. Norris D. A.,
    3. Yohn J. J.,
    4. zekman T.,
    5. Travers J. B.,
    6. Morelli J. G.
    (1995) Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J. Invest. Dermatol 104, 256–259
    OpenUrlCrossRefPubMedWeb of Science
    1. Keshet E.,
    2. Lyman S. D.,
    3. Williams D. E.,
    4. Anderson D. M.,
    5. Jenkins N. A.,
    6. Copeland N. G.,
    7. Parada L. F.
    (1991) Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in the mouse development. EMBO J 10, 2425–2435
    OpenUrlPubMedWeb of Science
    1. Kimura S.,
    2. Niwa H.,
    3. Moriyama M.,
    4. Araki K.,
    5. Abe K.,
    6. Miike T.,
    7. Yamamura K.
    (1995) Improvement of germ line transmission by targettinggaractosidase to nuclei in transgenic mice. Dev. Growth Differ 36, 521–527
    OpenUrlCrossRef
    1. Kluppel M.,
    2. Nable D. L.,
    3. Bucan M.,
    4. Bernstein A.
    (1997) Long-range genomic rearrangements upstream of Kit dysregulate the developmental pattern of Kit expression in W 57and W banded mice and interfere with distinct steps in melanocyte development. Development 124, 65–77
    OpenUrlAbstract
    1. Kunisada T.,
    2. Lu S.-Z.,
    3. Yoshida H.,
    4. Nishikawa S.,
    5. Nishikawa S.-I.,
    6. Mizoguchi M.,
    7. Hayashi S.-I.,
    8. Tyrrell L.,
    9. Williams D. A.,
    10. Longley B. J.
    (1998) Murine cutaneous mastcytosis and epidermal melanocytosis induced by Keratinocyte expression of transgenic Stem cell factor. J. Exp. Med 10, 1565–1573
    OpenUrl
    1. Kunisada T.,
    2. Yoshida H.,
    3. Ogawa M.,
    4. Shultz L. D.,
    5. Nishikawa S.-I.
    (1996) Characterization and isolation of melanocyte progenitors from mouse embryos. Develop. Growth Differ 38, 87–97
    OpenUrlCrossRef
    1. Maeda H.,
    2. Yamagata A.,
    3. Nishikawa S.,
    4. Yoshinaga K.,
    5. Kobayashi S.,
    6. Nishi K.,
    7. Nishikawa S.-I.
    (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116, 369–375
    OpenUrlAbstract/FREE Full Text
    1. Manova K.,
    2. Bachvarova R. F.
    (1991) Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev. Biol 146, 312–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsui Y.,
    2. Zsebo K. M.,
    3. Hogan B. L. M.
    (1990) Embryonic expression of a hematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 347, 667–669
    OpenUrlCrossRefPubMed
    1. Mayer T. C.,
    2. Maltby
    (1964) An experimental investigation of pattern development in lethal spotting and belted mouse embryos. Dev. Biol 9, 269–286
    OpenUrlCrossRefWeb of Science
    1. McCoshen J. A.,
    2. McCallion D. J.
    (1975) Study of the primodial germ cells during their migratory phase in steel mutant mouse. Experientia 31, 589–590
    OpenUrlCrossRefPubMedWeb of Science
    1. Meininger C. J.,
    2. Yano H.,
    3. Rottapel R.,
    4. Bernstein A.,
    5. Zsebo K. M.,
    6. Zetter B. R.
    (1992) The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79, 958–963
    OpenUrlAbstract/FREE Full Text
    1. Mintz B.,
    2. Russel E. S.
    (1957) Gene-induced embryological modifications of primodial germ cells in the mouse. J. Exp. Zool 134, 207–237
    OpenUrlCrossRefPubMedWeb of Science
    1. Morrison-Graham K.,
    2. Weston J. A.
    (1993) Transient steel factor dependence by neural crest-derived melanocyte precursors. Dev. Biol 159, 346–352
    OpenUrlCrossRefPubMedWeb of Science
    1. Murphy M.,
    2. Reid K.,
    3. Williams D. E.,
    4. Lyman S. D.,
    5. Bartlett P. F.
    (1992) Steel factor is required for maintenance, but not differentiation, of melanocyte precursors in the neural crest. Dev. Biol 153, 396–401
    OpenUrlCrossRefPubMed
    1. Nishikawa S.,
    2. Kusakabe M.,
    3. Yoshinaga K.,
    4. Ogawa M.,
    5. Hayashi S.-I.,
    6. Kunisada T.,
    7. Era T.,
    8. Sakakura T.,
    9. Nishikawa S.-I.
    (1991) In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody:two distinct waves of c-kit-dependency during melanocyte development. EMBO J 10, 2111–2118
    OpenUrlPubMedWeb of Science
    1. Okura M.,
    2. Maeda H.,
    3. Nishikawa S.-I.,
    4. Mizoguchi M.
    (1995) Effects of monoclonal anti-c-kit antibody (ACK2) on melanocytes in newborn mice. J. Invest. Dermatol 105, 322–328
    OpenUrlCrossRefPubMedWeb of Science
    1. Orr-Urtreger A.,
    2. Avivi A.,
    3. Zimmer Y.,
    4. Givol D.,
    5. Yarden Y.,
    6. Lonai P.
    (1990) Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109, 911–923
    OpenUrlAbstract/FREE Full Text
    1. Pavan W. J.,
    2. Tilghman S. M.
    (1994) Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proc. Natl. Acad. Sci. USA 91, 7159–7163
    OpenUrlAbstract/FREE Full Text
    1. Steel K. P.,
    2. Davidson D. R.,
    3. Jackson I. J.
    (1992) TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115, 1111–1119
    OpenUrlAbstract
    1. Tachibana M.,
    2. Takeda K.,
    3. Nobukuni Y.,
    4. Urabe K.,
    5. Long J. E.,
    6. Mayers K. A.,
    7. Aaronson S. A.,
    8. Miki T.
    (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibloblasts to cells with melanocyte characteristics. Nature Genet 14, 50–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsai M.,
    2. Shih L.-S.,
    3. Newlands G. F. J.,
    4. Takeishi T.,
    5. Lamgley K. E.,
    6. Zsebo K. M.,
    7. Miller H. R. P.,
    8. Geissler E. N.,
    9. Galli S. J.
    (1991) The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry, and protease phenotype. J. Exp. Med 174, 125–131
    OpenUrlAbstract/FREE Full Text
    1. Tsukamoto K.,
    2. Jackson I. J.,
    3. Urabe K.,
    4. Montague P. M.,
    5. Hearing V. J.
    (1992) A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 11, 519–526
    OpenUrlPubMedWeb of Science
    1. Vassar R.,
    2. Rosenberg M.,
    3. Ross S.,
    4. Tyner A.,
    5. Fuchs E.
    (1989) Tissue-specific and differentiation specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86, 1563–1567
    OpenUrlAbstract/FREE Full Text
    1. Ward S.,
    2. Burns A.,
    3. Torihashi S.,
    4. Sanders K.
    (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol 480, 91–97
    OpenUrl
    1. Wehrle-Haller B.,
    2. Weston J. A.
    (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121, 731–742
    OpenUrlAbstract
    1. Williams D. E.,
    2. de Vries P.,
    3. Namen A. E.,
    4. Widmer M. B.,
    5. Lyman S. D.
    (1992) The steel factor. Develop. Biol 151, 368–376
    OpenUrlCrossRefPubMedWeb of Science
    1. Yasunaga M.,
    2. Wang F. H.,
    3. Kunisada T.,
    4. Nishikawa S.,
    5. Nishikawa S. I.
    (1995) Cell cycle control of c-kit+IL-7R+B precursor cells by two distinct signals derived from IL-7 receptor and c-kit in a fully defined medium. J. Exp. Med 182, 315–323
    OpenUrlAbstract/FREE Full Text
    1. Yoshida H.,
    2. Hayashi S.-I.,
    3. Shultz L. D.,
    4. Yamamura K.-I.,
    5. Nishikawa S.,
    6. Nishikawa S.-I.,
    7. Kunisada T.
    (1996) Neural and skin cell specific expression pattern conferred by Steel factor regulatory sequence in transgenic mice. Dev. Dyn 207, 222–232
    OpenUrlCrossRefPubMedWeb of Science
    1. Yoshida H.,
    2. Kunisada T.,
    3. Nishikawa S.-I.
    (1996) Distinct stages of melanocyte differentiation revealed by analysis of nonuniform pigmentation patterns. Development 122, 1207–1214
    OpenUrlAbstract
    1. Yoshida H.,
    2. Nishikawa S.-I.,
    3. Okamura H.,
    4. Sakakura T.,
    5. Kusakabe M.
    (1993) The role of c-kit proto-oncogene during melanocyte development in mouse. In vivo approach by the in utero microinjection of anti-c-kit antibody. Dev. Growth Differ 35, 209–220
    OpenUrlPubMed
    1. Zsebo K. M.,
    2. Williams D. A.,
    3. Geissler E. N.,
    4. Broudy V. C.,
    5. Martin F. H.,
    6. Atkins H. L.,
    7. Hsu R. Y.,
    8. Birkett N. C.,
    9. Okino K.,
    10. Murdock D. C.,
    11. Jacobson F. W.,
    12. Langley K. E.,
    13. Smith K. A.,
    14. Takeishi T.,
    15. Cattanach B. M.,
    16. Galli S.,
    17. Suggs S. V.
    (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63, 213–224
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors
T. Kunisada, H. Yoshida, H. Yamazaki, A. Miyamoto, H. Hemmi, E. Nishimura, L.D. Shultz, S. Nishikawa, S. Hayashi
Development 1998 125: 2915-2923;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors
T. Kunisada, H. Yoshida, H. Yamazaki, A. Miyamoto, H. Hemmi, E. Nishimura, L.D. Shultz, S. Nishikawa, S. Hayashi
Development 1998 125: 2915-2923;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992