Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice
G. Ranganayakulu, D.A. Elliott, R.P. Harvey, E.N. Olson
Development 1998 125: 3037-3048;
G. Ranganayakulu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.A. Elliott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.P. Harvey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.N. Olson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Recent evidence suggests that cardiogenesis in organisms as diverse as insects and vertebrates is controlled by an ancient and evolutionarily conserved transcriptional pathway. In Drosophila, the NK-2 class homeobox gene tinman (tin) is expressed in cardiac and visceral mesodermal progenitors and is essential for their specification. In vertebrates, the tin homologue Nkx2-5/Csx and related genes are expressed in early cardiac and visceral mesodermal progenitors. To test for an early cardiogenic function for Nkx2-5 and to examine whether cardiogenic mechanisms are conserved, we introduced the mouse Nkx2-5 gene and various mutant and chimeric derivatives into the Drosophila germline, and tested for their ability to rescue the tin mutant phenotype. While tin itself strongly rescued both heart and visceral mesoderm, Nkx2-5 rescued only visceral mesoderm. Other vertebrate ‘non-cardiac’ NK-2 genes rescued neither. We mapped the cardiogenic domain of tin to a unique region at its N terminus and, when transferred to Nkx2-5, this region conferred a strong ability to rescue heart. Thus, the cardiac and visceral mesodermal functions of NK-2 homeogenes are separable in the Drosophila assay. The results suggest that, while tin and Nkx2-5 show close functional kinship, their mode of deployment in cardiogenesis has diverged possibly because of differences in their interactions with accessory factors. The distinct cardiogenic programs in vertebrates and flies may be built upon a common and perhaps more ancient program for specification of visceral muscle.

REFERENCES

    1. Ananthan J.,
    2. Baler R.,
    3. Morrissey D.,
    4. Zuo J.,
    5. Lan Y.,
    6. Weir M.,
    7. Voellmy R.
    (1993) Synergistic activation of transcription is mediated bythe N-terminal domain of Drosophila fushi tarazu homeoprotein and can occur without DNA binding by the protein. Mol. Cell. Biol 13, 1599–1609
    OpenUrlAbstract/FREE Full Text
    1. Azpiazu N.,
    2. Frasch M.
    (1993) tinman and bagpipe: Two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7, 1325–1340
    OpenUrlAbstract/FREE Full Text
    1. Azpiazu N.,
    2. Lawrence P. A.,
    3. Vincent J. P.,
    4. Frasch M.
    (1996) Segmentation and specification of the Drsosophila mesoderm. Genes Dev 10, 3183–3194
    OpenUrlAbstract/FREE Full Text
    1. Bachiller D.,
    2. Macias A.,
    3. Duboule D.,
    4. Morata G.
    (1994) Conservation of a functional hierarchy between mammalian and insect Hox/HOM genes. EMBO J 8, 1930–1941
    OpenUrl
    1. Baylies M. K.,
    2. Bate M.
    (1996) twist: A myogenic switch in Drosophila. Science 272, 1481–1484
    OpenUrlAbstract
    1. Biben C.,
    2. Hatzistavrou T.,
    3. Harvey R. P.
    (1998) Expression of NK-2 class homeobox gene Nkx2-6 in foregut endoderm and heart. Mech. Dev 73, 125–127
    OpenUrlCrossRefPubMedWeb of Science
    1. Bodmer R.
    (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118, 719–729
    OpenUrlAbstract
    1. Bodmer R.,
    2. Jan L. Y.,
    3. Jan Y. N.
    (1990) A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation in Drosophila. Development 110, 661–669
    OpenUrlAbstract/FREE Full Text
    1. Bour B.A.,
    2. O'Brien M. A.,
    3. Lockwood W. L.,
    4. Goldstein E. S.,
    5. Bodmer R.,
    6. Taghert P. H.,
    7. Abmayr S. M.,
    8. Nguyen H. T.
    (1995) Drosophila Mef2, a transcription factor that is essential for myogenesis. Genes Dev 9, 730–741
    OpenUrlAbstract/FREE Full Text
    1. Brand A. H.,
    2. Perrimon N.
    (1993) Targeted gene expression as a means of altering cell fatesand generating dominant phenotypes. Development 118, 401–415
    OpenUrlAbstract
    1. Brand T.,
    2. Andree B.,
    3. Schneider A.,
    4. Buchberger A.,
    5. Arnold H.-H.
    (1997) Chicken Nkx2-8, a novel homeobox gene expressed during early heart and foregut development. Mech. Dev 64, 53–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Buchberger A.,
    2. Pabst O.,
    3. Brand T.,
    4. Seidl K.,
    5. Arnold H. H.
    (1996). Chick Nkx2.3 represents a novel family member of vertebrate homologues to the Drosophila homeobox gene tinman: differential expression of cNKx2.3 and cNKx2-5 during heart and gut development. Mech. Dev 56, 151–163
    OpenUrlCrossRefPubMed
    1. Chang C.,
    2. Gralla J. D.
    (1994) A critical role for chromatin in mounting a synergistic transcriptional response to GAL4-VP16. Mol. Cell. Biol 14, 5175–5181
    OpenUrlAbstract/FREE Full Text
    1. Chen C. Y.,
    2. Schwartz R. J.
    (1995) Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, Nkx2-5. J. Biol. Chem 270, 15628–15633
    OpenUrlAbstract/FREE Full Text
    1. Chen J.-N.,
    2. Fishman M. C.
    (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809–3816
    OpenUrlAbstract
    1. Cleaver O. B.,
    2. Patterson K. D.,
    3. Krieg P. A.
    (1996) Overexpression of the tinman-related genes XNkx2-5 and XNkx2-3 in Xenopus embryos results in myocardial hyperplasia. Development 122, 3549–3556
    OpenUrlAbstract
    1. Copeland J. W. R.,
    2. Nasiadka A.,
    3. Dietrich B. H.,
    4. Krause H. M.
    (1996) Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide. Nature 379, 162–165
    OpenUrlCrossRefPubMed
    1. De Felice M.,
    2. Damante G.,
    3. Zannini M.,
    4. Francis-Lang H.,
    5. Di Lauro R.
    (1995) Redundant domains contribute to the transcriptional activity of the thyroid transcription factor 1. J. Biol. Chem 270, 26649–26656
    OpenUrlAbstract/FREE Full Text
    1. Evans S. M.,
    2. Yan. W.,
    3. Murillo P. M.,
    4. Ponce J.,
    5. Papalopulu N.
    (1995). tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx2.3, a second vertebrate homologue of tinman. Development 121, 3889–3899
    OpenUrlAbstract
    1. Fishman M. C.,
    2. Olson E. N.
    (1997) Parsing the heart: genetic modules for organ assembly. Cell 91, 153–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Frasch M.
    (1995) Induction of visceral and cardiac mesoderm by ectopic Dpp in the early Drosophila embryo. Nature 374, 464–467
    OpenUrlCrossRefPubMedWeb of Science
    1. Frasch M.,
    2. Hoey T.,
    3. Rushlow C.,
    4. Levine M.
    (1987) Characterization and localization of the even-skipped protein of Drosophila. EMBO J 6, 749–759
    OpenUrlPubMedWeb of Science
    1. Gajewski K.,
    2. Kim Y.,
    3. Lee Y. M.,
    4. Olson E. N.,
    5. Schulz R. A.
    (1997) D-Mef2 is a target for tinman activation during Drosophila heart development. EMBO J 16, 515–522
    OpenUrlAbstract
    1. Gibson G.,
    2. Schier A.,
    3. LeMotte P.,
    4. Gehring W. J.
    (1990) The specificities of Sex Combs reduced and Antennapedia are defined by a distinct portion of each protein that includes the homeodomain. Cell 62, 1087–1103
    OpenUrlCrossRefPubMedWeb of Science
    1. Harvey R. P.
    (1996) NK-2 homeobox genes and heart development. Dev. Biol 178, 203–216
    OpenUrlCrossRefPubMedWeb of Science
    1. Huang D. C.,
    2. Cory S.,
    3. Strasser A.
    (1997) Bcl-2, Bcl-XL and adenovirus protein E1B19KD are functionally equivalent in their ability to inhibit cell death. Oncogene 14, 405–414
    OpenUrlCrossRefPubMedWeb of Science
    1. Jagla K.,
    2. Frasch M.,
    3. Jagla T.,
    4. Dretzen G.,
    5. Bellard F.,
    6. Bellard M.
    (1996) ladybird, a new component of the cardiogenic pathways in Drosophila required for diversification of heart precursors. Development 124, 3471–3479
    OpenUrlAbstract
    1. Komuro I.,
    2. Izumo S.
    (1993) Csx: A murine homeobox-containing genespecifically expressed in the developing heart. Proc. Natl Acad. Sci. USA 90, 8145–8149
    OpenUrlAbstract/FREE Full Text
    1. Kuziora M. A.,
    2. McGinnis W.
    (1989) A homeodomain substitution changes the regulatory specificity of the Deformed protein in Drosophila embryos. Cell 59, 563–571
    OpenUrlCrossRefPubMedWeb of Science
    1. Lawrence P.,
    2. Bodmer R.,
    3. Vincent J. P.
    (1995) Segmental patterning of heart precursors in Drosophila. Development 121, 4303–4308
    OpenUrlAbstract
    1. Lee K. H.,
    2. Xu Q.,
    3. Breitbart R. E.
    (1996). A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev. Biol 180, 722–731
    OpenUrlCrossRefPubMedWeb of Science
    1. Lilly B.,
    2. Zhao B.,
    3. Ranganayakulu G.,
    4. Paterson B.,
    5. Schulz R. A.,
    6. Olson E. N.
    (1995) Requirement of MADS domain transcription factor D-Mef2 for muscle formation in Drosophila. Science 267, 688–693
    OpenUrlAbstract/FREE Full Text
    1. Lints T. J.,
    2. Parsons L. M.,
    3. Hartley L.,
    4. Lyons I.,
    5. Harvey R. P.
    (1993) Nkx2-5: A novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 419–431
    OpenUrlAbstract
    1. Lough J. M.,
    2. Barron M.,
    3. Brogley M.,
    4. Sugi Y.,
    5. Bolender D. L.,
    6. Zhu X. L.
    (1996) Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev. Biol 178, 198–202
    OpenUrlCrossRefPubMedWeb of Science
    1. Lutz B.,
    2. Lu H. C.,
    3. Eichele G.,
    4. Miller D.,
    5. Kaufman T.
    (1996) Rescue of Drosophila labial null mutant by the chicken ortholog Hoxb-1demonstrates that the function of Hox genes is phylogenetically conserved. Genes Dev 10, 176–184
    OpenUrlAbstract/FREE Full Text
    1. Lyons I.,
    2. Parsons L. M.,
    3. Hartley L.,
    4. Li R.,
    5. Andrews J. E.,
    6. Robb L.,
    7. Harvey R. P.
    (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2-5. Genes Dev 9, 1654–1666
    OpenUrlAbstract/FREE Full Text
    1. Malicki J.,
    2. Schughart K.,
    3. McGinnis W.
    (1990). Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell 63, 961–967
    OpenUrlCrossRefPubMedWeb of Science
    1. Mann R. S.,
    2. Hogness D.
    (1990) Functional dissection of Ultrabithorax proteins in D. melanogaster. Cell 60, 597–610
    OpenUrlCrossRefPubMedWeb of Science
    1. McGinnis N.,
    2. Kuziora M. A.,
    3. McGinnis W.
    (1990). Human Hox-4.2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63, 969–976
    OpenUrlCrossRefPubMedWeb of Science
    1. Morrissey D.,
    2. Askew D.,
    3. Raj L.,
    4. Weir M.
    (1991) Functional dissection of the paired segmentation gene in Drosophila embryos. Genes Dev 5, 1684–1696
    OpenUrlAbstract/FREE Full Text
    1. Nordeen S. K.
    (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6, 454–458
    OpenUrlPubMedWeb of Science
    1. Olson E. N.,
    2. Srivastava D.
    (1996) Molecular pathways controlling heart development. Science 272, 671–676
    OpenUrlAbstract/FREE Full Text
    1. Patel N.,
    2. Snow P. M.,
    3. Goodman C. S.
    (1987) Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell 48, 975–988
    OpenUrlCrossRefPubMedWeb of Science
    1. Popperl H.,
    2. Bienz M.,
    3. Studier M.,
    4. Chan S.-K.,
    5. Aparacio S.,
    6. Brenner S.,
    7. Mann R.,
    8. Krumlauf R.
    (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042
    OpenUrlCrossRefPubMedWeb of Science
    1. Price M.,
    2. Lazzarro D.,
    3. Pohl T.,
    4. Mattei M. G.,
    5. Ruther U.,
    6. Olivo J. C.,
    7. Duboule D.,
    8. Di Lauro R.
    (1992) Regional expression of the homeobox gene Nkx2-2 in the developing mammalian forebrain. Neuron 8, 241–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Ranganayakulu G.,
    2. Zhao B.,
    3. Dokidis A.,
    4. Molkentin J. D.,
    5. Olson E. N.,
    6. Schulz R. A.
    (1995) A series of mutations in the DMef-2 transcription factor reveal multiple functions in larval and adult myogenesis. Dev. Biol 171, 169–181
    OpenUrlCrossRefPubMedWeb of Science
    1. Ranganayakulu G.,
    2. Schulz R. A.,
    3. Olson E. N.
    (1996) wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol 176, 143–148
    OpenUrlCrossRefPubMedWeb of Science
    1. Reecy J. M.,
    2. Yamada M.,
    3. Cummings K.,
    4. Sosic D.,
    5. Chen C. Y.,
    6. Eichle G.,
    7. Olson E. N.,
    8. Schwartz R. J.
    (1997) Chicken Nkx2-8: A novel homeobox gene expressed in early heart progenitor cells and pharyngeal pouch-2 and-3 endoderm. Dev. Biol 188, 295–311
    OpenUrlCrossRefPubMedWeb of Science
    1. Riechmann V.,
    2. Iron V.,
    3. Wilson R.,
    4. Grosskortenhaus R.,
    5. Leptin M.
    (1997) Control of cell fates and segmentation in the Drosophila mesoderm. Development 124, 2915–2922
    OpenUrlAbstract
    1. Rubin G. M.,
    2. Spradling A. C.
    (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353
    OpenUrlAbstract/FREE Full Text
    1. Sadowski I.,
    2. Bell B.,
    3. Broad P.,
    4. Hollis M.
    (1992) GAL4 fusion vectors for expression in yeast or mammalian cells. Gene 118, 137–141
    OpenUrlCrossRefPubMedWeb of Science
    1. Schultheiss T. M.,
    2. Burch J. B. E.,
    3. Lassar A. B.
    (1996) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11, 451–462
    OpenUrlAbstract/FREE Full Text
    1. Smith S.,
    2. Jaynes J. B.
    (1996) A conserved region of engrailed, shared among all en-, gsc-, Nk1-, NK2-, and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122, 3141–3150
    OpenUrlAbstract
    1. Stern S.,
    2. Tanaka M.,
    3. Herr W.
    (1989) The Oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator. Nature 341, 624–630
    OpenUrlCrossRefPubMed
    1. Thummel C. S.,
    2. Pirrotta V.
    (1992) New pCaSpeR P element vectors. Drosoph. Inform. Serv 71, 150–.
    OpenUrl
    1. Tonissen K. F.,
    2. Drysdale T. A.,
    3. Lints T. J.,
    4. Harvey R. P.,
    5. Kreig P. A.
    (1994). XNkx-2.5, a Xenopus gene related to Nkx2-5 and tinman: evidence for a conserved role in cardiac development. Dev.Biol 162, 325–328
    OpenUrlCrossRefPubMedWeb of Science
    1. Wu X.,
    2. Golden K.,
    3. Bodmer R.
    (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev. Biol 169, 619–628
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhao J. J.,
    2. Lazzarini R. A.,
    3. Pick L.
    (1993). The mouse Hox-1.3 gene is functionally equivalent to the Drosophila sex combs reduced gene. Genes Dev 7, 343–354
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice
G. Ranganayakulu, D.A. Elliott, R.P. Harvey, E.N. Olson
Development 1998 125: 3037-3048;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice
G. Ranganayakulu, D.A. Elliott, R.P. Harvey, E.N. Olson
Development 1998 125: 3037-3048;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992