Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary
K. Lun, M. Brand
Development 1998 125: 3049-3062;
K. Lun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Brand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Generation of cell diversity in the vertebrate central nervous system starts during gastrulation stages in the ectodermal germ layer and involves specialized cell groups, such as the organizer located at the midbrain-hindbrain boundary (MHB). Mutations in the zebrafish no isthmus (noi) gene alter development of the MHB, and affect the pax2.1 gene (formerly pax(zf-b)). Analysis of the structure of pax2.1 reveals at least 12 normal splice variants. The noi alleles can be arranged, by molecular and phenotypic criteria, into a series of five alleles of differing strength, ranging from a null allele to weak alleles. In keeping with a role in development of the MHB organizer, gene expression is already affected in the MHB primordium of the gastrula neural ectoderm in noi mutants. eng3 activation is completely and eng2 activation is strongly dependent on noi function. In contrast, onset of wnt1, fgf8 and her5 expression occurs normally in the null mutants, but is eliminated later on. Our observations suggest that three signaling pathways, involving pax2.1, wnt1 and fgf8, are activated independently in early anterior-posterior patterning of this area. In addition, analysis of the allelic series unexpectedly suggests that noi activity is also required during dorsal-ventral patterning of the MHB in somitogenesis stages, and possibly in a later eng expression phase. We propose that noi/pax2.1 participates in sequential signaling processes as a key integrator of midbrain-hindbrain boundary development.

REFERENCES

    1. Acampora D.,
    2. Avantaggito V.,
    3. Tuorto F.,
    4. Simeone A.
    (1997) Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124, 3639–3650
    OpenUrlAbstract
    1. Adams B.,
    2. Dörfler P.,
    3. Aguzzi A.,
    4. Kozmik Z.,
    5. Urbanek P.,
    6. Maurer-Fogy I.,
    7. Busslinger M.
    (1992) Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 6, 1589–1607
    OpenUrlAbstract/FREE Full Text
    1. Anderson K. V.,
    2. Jurgens G.,
    3. Nusslein-Volhard C.
    (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42, 779–789
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S. L.
    (1996) The brain organization. Nature 380, 25–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S. L.,
    2. Jin O.,
    3. Rhinn M.,
    4. Daigle N.,
    5. Stevenson L.,
    6. Rossant J.
    (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–252
    OpenUrlAbstract
    1. Ang S. L.,
    2. Rossant J.
    (1993) Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118, 139–149
    OpenUrlAbstract
    1. Asano M.,
    2. Gruss P.
    (1992) Pax-5 is expressed at the midbrain-hindbrain boundary during mouse development. Mech. Dev 39, 29–39
    OpenUrlCrossRefPubMedWeb of Science
    1. Bally-Cuif L.,
    2. Wassef M.
    (1995) Determination events in the nervous system of the vertebrate embryo. Curr. Opin. Genet. Dev 5, 450–458
    OpenUrlCrossRefPubMedWeb of Science
    1. Brand M.,
    2. Heisenberg C.-P.,
    3. Jiang Y.-J.,
    4. Beuchle D.,
    5. Lun K.,
    6. van Eeden F. J. M.,
    7. Furutani-Seiki M.,
    8. Granato M.,
    9. Haffter P.,
    10. Hammerschmidt M.,
    11. Kane D. A.,
    12. Kelsh R. N.,
    13. Mullins M. C.,
    14. Odenthal J.,
    15. Nusslein-Volhard C.
    (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179–190
    OpenUrlAbstract/FREE Full Text
    1. Brown N. H.,
    2. Kafatos F. C.
    (1988) Functional cDNA libraries from Drosophila embryos. J. Mol. Biol 203, 425–437
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martinez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68
    OpenUrlCrossRefPubMed
    1. Dahl E.,
    2. Koseki H.,
    3. Balling R.
    (1997) Pax genes and organogenesis. BioEssays 19, 755–765
    OpenUrlCrossRefPubMedWeb of Science
    1. Danielian P. S.,
    2. McMahon A. P.
    (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334
    OpenUrlCrossRefPubMedWeb of Science
    1. DeRobertis E. M.,
    2. Sasai Y.
    (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40
    OpenUrlCrossRefPubMed
    1. Dörfler P.,
    2. Busslinger M.
    (1996) C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J 15, 1971–1982
    OpenUrlPubMedWeb of Science
    1. Ekker M.,
    2. Wegner J.,
    3. Akimenko M. A.,
    4. Westerfield M.
    (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116, 1001–1010
    OpenUrlAbstract/FREE Full Text
    1. Epstein D. J.,
    2. Vogan K. J.,
    3. Trasler D. G.,
    4. Gruss P.
    (1993) A mutation within intron 3 of the Pax −3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc. Nat. Acad. Sci. USA 90, 532–536
    OpenUrlAbstract/FREE Full Text
    1. Favor J.,
    2. Sandulache R.,
    3. Neuhäuser-Klaus A.,
    4. Pretsch W.,
    5. Chatterjee B.,
    6. Senft E.,
    7. Wurst W.,
    8. Blanquet V.,
    9. Grimes P.,
    10. Spörle R.,
    11. Schughart K.
    (1996) The mouse Pax21Neumutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye and kidney. Proc. Nat. Acad. Sci. USA 93, 13870–13875
    OpenUrlAbstract/FREE Full Text
    1. Furthauer M.,
    2. Thisse C.,
    3. Thisse B.
    (1997) A role for Fgf-8 in the dorsoventral patterning of the zebrafish gastrula. Development 124, 4253–4264
    OpenUrlAbstract
    1. Hanson I. M.,
    2. Fletcher J. M.,
    3. Jordan T.,
    4. Brown A.,
    5. Taylor D.,
    6. Adams R. J.,
    7. Punnet H. H.,
    8. van Heyningen V.
    (1994) Mutations at the PAX6 Locus are found in heterogenous anterior segment malformations including Peters' anomaly. Nat. Genet 6, 168–173
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatta K.,
    2. Bremiller R.,
    3. Westerfield M.,
    4. Kimmel C. B.
    (1991) Diversity of expression of engrailed -like antigens in zebrafish. Development 112, 821–832
    OpenUrlAbstract
    1. Heller N.,
    2. Brändli A.
    (1997) Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. Mech. Dev 69, 83–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Joyner A. L.
    (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12, 15–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Kelly G. M.,
    2. Moon R. T.
    (1995) Involvement of wnt1 and pax2 in the formation of the midbrain-hindbrain boundary in the zebrafish gastrula. Dev. Genet 17, 129–140
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullmann B.,
    5. Schilling T. F.
    (1995) Stages of embryonic development of the zebrafish. Dev. Dyn 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Köster R.,
    2. Stick R.,
    3. Loosli F.,
    4. Wittbrodt J.
    (1997) Medaka spalt acts as a target gene of hedgehog signaling. Development 124, 3147–3156
    OpenUrlAbstract
    1. Kozmik Z.,
    2. Wang S.,
    3. Dörfler P.,
    4. Adams B.,
    5. Busslinger M.
    (1992) The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell Biol 12, 2662–2672
    OpenUrlAbstract/FREE Full Text
    1. Krauss S.,
    2. Johansen T.,
    3. Korzh V.,
    4. Fjose A.
    (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113, 1193–1206
    OpenUrlAbstract
    1. Lee S. M.,
    2. Danielian P. S.,
    3. Fritzsch B.,
    4. McMahon A. P.
    (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969
    OpenUrlAbstract
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Macdonald R.,
    2. Barth K. A.,
    3. Xu Q.,
    4. Holder N.,
    5. Mikkola I.,
    6. Wilson S. W.
    (1995) Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278
    OpenUrlAbstract
    1. Macdonald R.,
    2. Scholes J.,
    3. Strähle U.,
    4. Brennan C.,
    5. Holder N.,
    6. Brand M.,
    7. Wilson S. W.
    (1997) The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development 124, 2397–2408
    OpenUrlAbstract
    1. Marin F.,
    2. Puelles L.
    (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev. Biol 163, 19–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Martinez S.,
    2. Wassef M.,
    3. Alvarado-Mallart R. M.
    (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon A. P.,
    2. Joyner A. L.,
    3. Bradley A.,
    4. McMahon J. A.
    (1992) The midbrain-hindbrain phenotype of Wnt-1/Wnt-1 mice results fromstepwise deletion of engrailed-expressing cells by 9. 5 days postcoitum. Cell 69, 581–595
    OpenUrlCrossRefPubMedWeb of Science
    1. Meyers E. N.,
    2. Lewandoski M.,
    3. Martin G. R.
    (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet 18, 136–142
    OpenUrlCrossRefPubMedWeb of Science
    1. Millen K. J.,
    2. Wurst W.,
    3. Herrup K.,
    4. Joyner A.
    (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120, 695–706
    OpenUrlAbstract
    1. Millet S.,
    2. Alvarado Mallart R. M.
    (1995) Expression of the homeobox-containing gene En-2 during the development of the chick central nervous system. Eur. J. Neurosci 7, 777–791
    OpenUrlCrossRefPubMedWeb of Science
    1. Molven A.,
    2. Njolstad P. R.,
    3. Fjose A.
    (1991) Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. EMBO J 10, 799–807
    OpenUrlPubMedWeb of Science
    1. Nornes H. O.,
    2. Dressler G. R.,
    3. Knapik E. W.,
    4. Deutsch U.,
    5. Gruss P.
    (1990) Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109, 797–809
    OpenUrlAbstract/FREE Full Text
    1. Nutt S. L.,
    2. Morrison A. M.,
    3. Dörfler P.,
    4. Rolink A.,
    5. Busslinger M.
    (1998) Identification of BSAP (Pax-5) target genes in early B-cell development by loss-and gain-of-function experiments. EMBO J 17, 2319–2333
    OpenUrlAbstract
    1. Padgett R. A.,
    2. Grabowski P. J.,
    3. Konarska M. M.,
    4. Seiler S.,
    5. Sharp P. A.
    (1986) Splicing of messenger RNA precursors. Ann. Rev. Biochem 55, 1119–1150
    OpenUrlCrossRefPubMedWeb of Science
    1. Pfeffer P. L.,
    2. Gerster T.,
    3. Lun K.,
    4. Brand M.,
    5. Busslinger M.
    (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2. 1 (noi) function. Development 125, 3063–3074
    OpenUrlAbstract
    1. Plachov D.,
    2. Chowdhury K.,
    3. Walther C.,
    4. Simon D.,
    5. Guenet J. L.,
    6. Gruss P.
    (1990) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110, 643–651
    OpenUrlAbstract/FREE Full Text
    1. Reifers F.,
    2. Böhli H.,
    3. Walsh E. C.,
    4. Crossley P. H.,
    5. Stainier D. Y. R.,
    6. Brand M.
    (1998) Fgf8 is mutated in zebrafish acerebellar mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395
    OpenUrlAbstract
    1. Retaux S.,
    2. Harris W. A.
    (1996) Engrailed and retinotectal topography. Trends Genet 19, 542–546
    OpenUrl
    1. Rowitch D. H.,
    2. McMahon A. P.
    (1995) Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mech. Dev 52, 3–8
    OpenUrlCrossRefPubMedWeb of Science
    1. Sanyanusin P.,
    2. Norrish J. H.,
    3. Ward T. A.,
    4. Nebel A.,
    5. McNoe L. A.,
    6. Eccles M. R.
    (1996) Genomic Structure of the Human PAX2 Gene. Genomics 35, 258–261
    OpenUrlCrossRefPubMedWeb of Science
    1. Sanyanusin P.,
    2. Schimmenti L. A.,
    3. Noe L. A.,
    4. Ward T. A.,
    5. Pierpont M. E. M.,
    6. Sullivan M. J.,
    7. Dobyns W. B.,
    8. Eccles M. R.
    (1995) Mutation of the Pax2 gene in a family with optic nerve colobomas, renal abnormalities and vesicouretal reflux. Nat. Genet 9, 358–363
    OpenUrlCrossRefPubMedWeb of Science
    1. Schier A. F.,
    2. Neuhauss S. C. F.,
    3. Harvey M.,
    4. Malicki J.,
    5. Solnica-Krezel L.,
    6. Stainier D. Y. R.,
    7. Zwartkruis F.,
    8. Abdelilah S.,
    9. Stemple D. L.,
    10. Rangini Z.,
    11. Yang H.,
    12. Driever W.
    (1996) Mutations affectingdevelopment of the embryonic zebrafish brain. Development 123, 165–178
    OpenUrlAbstract/FREE Full Text
    1. Schwarz M.,
    2. Alvarez-Bolado G.,
    3. Urbanek P.,
    4. Busslinger M.,
    5. Gruss P.
    (1997) Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: Evidence from targeted mutations. Proc. Nat. Acad. Sci. USA 94, 14518–14523
    OpenUrlAbstract/FREE Full Text
    1. Shimamura K.,
    2. Rubenstein J. L.
    (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718
    OpenUrlAbstract
    1. Simon H.,
    2. Hornbruch A.,
    3. Lumsden A.
    (1995) Independent assignment of antero-posterior and dorso-ventral positional values in the developing chick hindbrain. Curr. Biol 5, 205–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Song D. L.,
    2. Chalepakis G.,
    3. Gruss P.,
    4. Joyner A. L.
    (1996) Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122, 627–635
    OpenUrlAbstract
    1. Takada S.,
    2. Stark K. L.,
    3. Shea M. J.,
    4. Vassileva G.,
    5. McMahon J. A.,
    6. McMahon A. P.
    (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8, 174–189
    OpenUrlAbstract/FREE Full Text
    1. Tanabe Y.,
    2. Jessel T. M.
    (1996) Diversity and pattern in the developing spinal cord. Science 274, 1115–1123
    OpenUrlAbstract/FREE Full Text
    1. Tassabehji M.,
    2. Read A. P.,
    3. Newton V. E.,
    4. Harris R.,
    5. Balling R.,
    6. Gruss P.,
    7. Strachan T.
    (1992) Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636
    OpenUrlCrossRefPubMed
    1. Tassabehji M.,
    2. Read A. P.,
    3. Newton V. E.,
    4. Patton M.,
    5. Gruss P.,
    6. Harris R.,
    7. Strachan T.
    (1993) Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat. Genet 3, 26–30
    OpenUrlCrossRefPubMedWeb of Science
    1. Tavassoli K.,
    2. Ruger W.,
    3. Horst J.
    (1997) Alternative splicing in PAX2 generates a new reading frame and an extended conserved coding region at the carboxy terminus. Hum. Genet 101, 371–375
    OpenUrlCrossRefPubMedWeb of Science
    1. Torres M.,
    2. Gomez-Pardo E.,
    3. Dressler G. R.,
    4. Gruss P.
    (1995) Pax2 controls multiple steps of urogenital development. Development 121, 4057–4065
    OpenUrlAbstract
    1. Treisman R.,
    2. Orkin S. H.,
    3. Maniatis T.
    (1983) Structural and functional defects in beta thalassemia. Prog. Clin. Biol. Res 134, 99–121
    OpenUrlPubMed
    1. Urbanek P.,
    2. Fetka I.,
    3. Meisler M. H.,
    4. Busslinger M.
    (1997) Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. Proc. Nat. Acad. Sci. USA 94, 5703–5703
    OpenUrlAbstract/FREE Full Text
    1. Urbanek P.,
    2. Wang Z. Q.,
    3. Fetka I.,
    4. Wagner E. F.,
    5. Busslinger M.
    (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912
    OpenUrlCrossRefPubMedWeb of Science
    1. Wada H.,
    2. Saiga H.,
    3. Satoh N.,
    4. Holland P. W. H.
    (1998) Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125, 1113–1122
    OpenUrlAbstract
    1. Wassarman K. M.,
    2. Lewandoski M.,
    3. Campbell K.,
    4. Joyner A. L.,
    5. Rubenstein J. L.,
    6. Martinez S.,
    7. Martin G. R.
    (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934
    OpenUrlAbstract
    1. Wehr R.,
    2. Gruss P.
    (1996) Pax and vertebrate development. Int. J. Dev. Biol 40, 369–377
    OpenUrlPubMedWeb of Science
    1. Woo K.,
    2. Fraser S. E.
    (1997) Specification of the zebrafish nervous system by nonaxial signals. Science 277, 254–257
    OpenUrlAbstract/FREE Full Text
    1. Wurst W.,
    2. Auerbach A. B.,
    3. Joyner A. L.
    (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075
    OpenUrlAbstract
    1. Xu W.,
    2. Rould M. A.,
    3. Jun S.,
    4. Desplan C.,
    5. Pabo C. O.
    (1995) Crystal structure of a paired domain-DNA complex at 2. 5 A resolution reveals structural basis for Pax developmental mutations. Cell 80, 639–650
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary
K. Lun, M. Brand
Development 1998 125: 3049-3062;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary
K. Lun, M. Brand
Development 1998 125: 3049-3062;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992