Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Neural precursor cell chain migration and division are regulated through different beta1 integrins
T.S. Jacques, J.B. Relvas, S. Nishimura, R. Pytela, G.M. Edwards, C.H. Streuli, C. ffrench-Constant
Development 1998 125: 3167-3177;
T.S. Jacques
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.B. Relvas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Nishimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Pytela
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.M. Edwards
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.H. Streuli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. ffrench-Constant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Proliferation and tangential migration of neural precursor cells are essential determinants of CNS development. We have established cell culture models of both these processes using neural precursor cells grown as neurospheres. The pattern of migration that we observe in these cells is homotypic and occurs in the absence of a glial or neuronal scaffold, and is therefore equivalent to that previously described as chain migration. To determine the role of integrins in proliferation and migration, we have analysed the expression pattern of integrins on neurosphere cells and then performed blocking peptide and antibody experiments. Neurosphere cells express five major integrins, alpha5 beta1, alpha 6Abeta1, alphav beta1, alphav beta5 and alpha vbeta8 and, in addition, express low levels of alpha 6Bbeta1. Chain migration is inhibited by blocking the alpha 6beta1 integrin. Proliferation, by contrast, is inhibited by blocking the other beta1 integrins, alphav beta1 and alpha5 beta1. These results show that integrins are important regulators of neural precursor cell behaviour, with distinct beta1 integrins regulating proliferation and migration. They also demonstrate a novel role for the alpha6 beta1 integrin in the cell-cell interactions underlying homotypic chain migration.

REFERENCES

    1. Almeida E. A. C.,
    2. Huovila A.-P. J.,
    3. Sutherland A. E.,
    4. Stephens L. E.,
    5. Calarco P. G.,
    6. Shaw L. M.,
    7. Mercurio A. M.,
    8. Sonnenberg A.,
    9. Primakoff P.,
    10. Myles D. G.,
    11. White J. M.
    (1995) Mouse egg integrin6 1 functions as a sperm receptor. Cell 81, 1095–1104
    OpenUrlCrossRefPubMedWeb of Science
    1. Antonopoulos J.,
    2. Pappas I. S.,
    3. Parnavelas J. G.
    (1997) Activation of the GABAAreceptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur. J. Neurosci 9, 291–298
    OpenUrlCrossRefPubMedWeb of Science
    1. Barres B. A.,
    2. Hart I. K.,
    3. Coles H. S. R.,
    4. Burne J. F.,
    5. Voyvodic J. T.,
    6. Richardson W. D.,
    7. Raff M. C.
    (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Bonfanti L.,
    2. Theodosis D. T.
    (1994) Expression of polysialated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 62, 291–305
    OpenUrlCrossRefPubMedWeb of Science
    1. Bronner-Fraser M.
    (1993) Mechanisms of neural crest cell migration. BioEssays 15, 221–230
    OpenUrlCrossRefPubMedWeb of Science
    1. Bronner-Fraser M.,
    2. Artinger M.,
    3. Muschler J.,
    4. Horwitz A. F.
    (1992) Developmentally regulated expression of6 integrin in avian embryos. Development 115, 197–211
    OpenUrlAbstract
    1. Chang A. C.,
    2. Salomon D. R.,
    3. Wadsworth S.,
    4. Hong M.-J. P.,
    5. Mojcik C. F.,
    6. Otto S.,
    7. Shevach E. M.,
    8. Coligan J. E.
    (1995) 3 1 and 6 1 integrins mediate laminin/merosin binding and function as costimulatory molecules for human thymocyte proliferation. J. Immunol 154, 500–510
    OpenUrlAbstract
    1. Cooper H. M.,
    2. Tamura R. N.,
    3. Quaranta V.
    (1991) The major laminin receptor of mouse embryonic stem cells is a novel isoform of the6 1 integrin. J. Cell Biol 115, 843–850
    OpenUrlAbstract/FREE Full Text
    1. Craig C. G.,
    2. Tropepe V.,
    3. Morshead C. M.,
    4. Reynolds B. A.,
    5. Weiss S.,
    6. van der Kooy D.
    (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci 16, 2649–2658
    OpenUrlAbstract/FREE Full Text
    1. Dahlstrand J.,
    2. Lardelli M.,
    3. Lendahl U.
    (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Dev. Brain Res 84, 109–129
    OpenUrlCrossRefPubMedWeb of Science
    1. Davis L. S.,
    2. Oppenheimer-Marks N.,
    3. Bednarczyk J. L.,
    4. McIntyre B. W.,
    5. Lipsky P. E.
    (1990) Fibronectin promotes proliferation of naive and memory T-cells by signaling through both the VLA-4 and VLA-5 integrin molecules. J. Immunol 145, 785–793
    OpenUrlAbstract/FREE Full Text
    1. Dickinson M. E.,
    2. Krumlauf R.,
    3. McMahon A. P.
    (1994) Evidence for a mitogenic effect of wnt-1 in the developing mammalian central nervous system. Development 120, 1453–1471
    OpenUrlAbstract
    1. Doetsch F.,
    2. Alvarez-Buylla A.
    (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900
    OpenUrlAbstract/FREE Full Text
    1. Domanico S.Z.,
    2. Pelletier A.J.,
    3. Havran W.L.,
    4. Quaranta V.
    (1997) Integrin6A 1 induces CD-81-dependent cell motility without engaging the extracellular matrix migration substrate. Mol. Biol. Cell 8, 2253–65
    OpenUrlAbstract/FREE Full Text
    1. Drago J.,
    2. Nurcombe V.,
    3. Bartlett P. F.
    (1991) Laminin through its long arm E8 fragment promotes the proliferation and differentiation of murine neuroepithelial cells in vitro. Exp. Cell Res 192, 256–265
    OpenUrlCrossRefPubMedWeb of Science
    1. Fishell G.,
    2. Mason C. A.,
    3. Hatten M. E.
    (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362, 636–640
    OpenUrlCrossRefPubMed
    1. Frade J. M.,
    2. Marti E.,
    3. Bovolenta P.,
    4. Rodriguez-Pena M. A.,
    5. Perez-Garcia D.,
    6. Rohrer H.,
    7. Edgar D.,
    8. Rodriguez-Tebar A.
    (1996) Insulin-like growth factor-1 stimulates neurogenesis in chick retina by regulating expression of the6 integrin subunit. Development 122, 2497–2506
    OpenUrlAbstract
    1. Frederiksen K.,
    2. McKay R. D. G.
    (1988) Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci 8, 1144–1151
    OpenUrlAbstract
    1. Galileo D. S.,
    2. Majors J.,
    3. Horwitz A. F.,
    4. Sanes J. R.
    (1992) Retrovirally introduced antisense integrin RNA inhibits neuroblast migration in vivo. Neuron 9, 1117–1131
    OpenUrlCrossRefPubMedWeb of Science
    1. Haas T. A.,
    2. Plow E. F.
    (1994) Integrin-ligand interactions: a year in review. Curr. Opin. Cell Biol 6, 656–662
    OpenUrlCrossRefPubMedWeb of Science
    1. Hall D. E.,
    2. Reichardt L. F.,
    3. Crowley E.,
    4. Moezzi H.,
    5. Sonnenberg A.,
    6. Damsky C. H.
    (1990) The1 1 and6/ 1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol 110, 2175–2184
    OpenUrlAbstract/FREE Full Text
    1. Heirck B. P.,
    2. et al.
    (1993) Variants of the6 1 laminin receptor in early murine development: distibution, molecular cloning and chromosomal localization of the mouse integrin6 subunit. Cell Adhesion and Communication 1, 33–53
    OpenUrlPubMed
    1. Hogervorst F.,
    2. Admiraal L. G.,
    3. Niessen C.,
    4. Kuikman I.,
    5. Janssen H.,
    6. Daams H.,
    7. Sonnenberg A.
    (1993) Biochemical characterization and tissue distribution of the A and B variants of the integrin6 subunit. J. Cell Biol 121, 179–191
    OpenUrlAbstract/FREE Full Text
    1. Hurley R. W.,
    2. Mc Carthy J. B.,
    3. Verfaillie M.
    (1995) Direct adhesionto bone marrow stroma via fibronectin receptors inhibits haematopoietic progenitor proliferation. J. Clin. Invest 96, 511–519
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes R. O.
    (1992) Integrins: versatility, modulation and signalling in cell adhesion. Cell 69, 11–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes R. O.
    (1994) The impact of molecular biology on models for cell adhesion. BioEssays 16, 663–669
    OpenUrlCrossRefPubMedWeb of Science
    1. Johe K. K.,
    2. Hazel T. G.,
    3. Muller T.,
    4. Dugich-Djordjevic M. M.,
    5. McKay D. G.
    (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10, 3129–3140
    OpenUrlAbstract/FREE Full Text
    1. Lallier T. E.,
    2. Whittaker C. A.,
    3. DeSimone D. W.
    (1996) Integrin6 expression is required for early nervous system development in Xenopus laevis. Development 122, 2539–2554
    OpenUrlAbstract
    1. Lois C.,
    2. Garcia-Verdugo J.-M.,
    3. Alvarez-Buylla A.
    (1996) Chain migration of neuronal precursors. Science 271, 978–981
    OpenUrlAbstract/FREE Full Text
    1. LoTurco J.,
    2. Owens D. F.,
    3. Heath M. J. S.,
    4. Davis M. B. E.,
    5. Kriegstein A. R.
    (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298
    OpenUrlCrossRefPubMedWeb of Science
    1. Milner R.,
    2. ffrench-Constant C.
    (1994) A developmental analysis of oligodendroglial integrins in primary cells: changes inv-associated subunits during differentiation. Development 120, 3497–3506
    OpenUrlAbstract
    1. Milner R.,
    2. Edwards G.,
    3. Steuli C.,
    4. ffrench-Constant C.
    (1996) A role in migration for thev 1integrin expressed on oligodendrocyte precursors. J. Neurosci 16, 7240–7252
    OpenUrlAbstract/FREE Full Text
    1. Milner R.,
    2. Frost E. E.,
    3. Nishimura S.,
    4. Delcommenne M.,
    5. Streuli C.,
    6. Pytela R.,
    7. ffrench-Constant C.
    (1997) Expression ofv 3 andv 8 integrins during oligodendrocyte precursor differentiation in the presence and absence of axons. Glia 21, 350–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Milner R.,
    2. Wilby M.,
    3. Nishimura S.,
    4. Boylen K.,
    5. Edwards D.,
    6. Fawcett J.,
    7. Streuli C.,
    8. Pytela R.,
    9. ffrench-Constant C.
    (1997) Division of labour of Schwann cell integrins during migration on peripheral nerve extracellular matrix. Dev. Biol 185, 215–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Murayama O.,
    2. Nishida H.,
    3. Sekiguchi K.
    (1996) Novel peptide ligands for integrin6 1 selected from a phage display library. J. Biochem 120, 445–451
    OpenUrl
    1. O'Rourke N. A.,
    2. Dailey M. E.,
    3. Smith S. J.,
    4. McConnell S. K.
    (1992) Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302
    OpenUrlAbstract/FREE Full Text
    1. O'Rourke N. A.,
    2. Sullivan D. P.,
    3. Kaznowski C. E.,
    4. Jacobs A. A.,
    5. McConnell S. K.
    (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121, 2166–2176
    OpenUrl
    1. O'Rourke N.,
    2. Chenn A.,
    3. McConnell S. K.
    (1997) Postmitotic neurons migrate tangentially in cortical ventricular zone. Development 124, 997–1005
    OpenUrlAbstract
    1. Ono K.,
    2. Kawamura K.
    (1989) Migration of immature neurons along tangentially oriented fibers in the subpial part of the fetal mouse medulla oblongata. Exp. Brain Res 78, 290–300
    OpenUrlPubMedWeb of Science
    1. Ono K.,
    2. Tomasiewicz H.,
    3. Magnuson T.,
    4. Rutishauser U.
    (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609
    OpenUrlCrossRefPubMedWeb of Science
    1. Rakic P.
    (1990) Principles of neural cell migration. Experientia 46, 882–891
    OpenUrlCrossRefPubMedWeb of Science
    1. Ranscht B.,
    2. Clapshaw P. A.,
    3. Price J.,
    4. Noble M.,
    5. Seifert W.
    (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. USA 79, 2709–2713
    OpenUrlAbstract/FREE Full Text
    1. Reichardt L. F.,
    2. Tomaselli K. J.
    (1991) Extracellular matrix molecules and their receptors: functions in neural development. Annu. Rev. Neurosci 14, 531–570
    OpenUrlCrossRefPubMedWeb of Science
    1. Reid C. B.,
    2. Liang I.,
    3. Walsh C.
    (1995) Systematic widespread clonal organisation in cerebral cortex. Neuron 15, 299–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Reid C. B.,
    2. Tavazoie S. F.,
    3. Walsh C. A.
    (1997) Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124, 2441–2450
    OpenUrlAbstract
    1. Reynolds B. A.,
    2. Weiss S.
    (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710
    OpenUrlAbstract/FREE Full Text
    1. Reynolds B. A.,
    2. Weiss S.
    (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol 175, 1–13
    OpenUrlCrossRefPubMedWeb of Science
    1. Reynolds B. A.,
    2. Tetzlaff W.,
    3. Weiss S.
    (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci 12, 4565–4574
    OpenUrlAbstract
    1. Rousselot P.,
    2. Lois C.,
    3. Alvarez-Buylla A.
    (1995) Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the developing bulb of adult mice. J. Comp. Neurol 351, 51–61
    OpenUrlCrossRefPubMedWeb of Science
    1. Sheppard A. M.,
    2. Brunstrom J. E.,
    3. Thornton T. N.,
    4. Gerfen R. W.,
    5. Broekelmann T. J.,
    6. McDonald J. A.,
    7. Pearlman A. L.
    (1995) Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains. Dev. Biol 172, 504–518
    OpenUrlCrossRefPubMedWeb of Science
    1. Sheppard A. M.,
    2. Hamilton S. K.,
    3. Pearlman A. L.
    (1991) Changes in the distribution of extracellular matrix components accompany early morphogenetic events of mammalian cortical development. J. Neurosci 11, 3928–3942
    OpenUrlAbstract
    1. Sonnenberg A.,
    2. Modderman P. W.,
    3. Hogervorst F.
    (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336, 487–489
    OpenUrlCrossRefPubMed
    1. Stewart G. R.,
    2. Pearlman A. L.
    (1987) Fibronectin-like immunoreactivity in the developing cerebral cortex. J. Neurosci 7, 3325–3333
    OpenUrlAbstract
    1. Svendsen C. N.,
    2. Fawcett J. W.,
    3. Bentlage C.,
    4. Dunnett S. B.
    (1995) Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp. Brain Res 102, 407–414
    OpenUrlPubMedWeb of Science
    1. The Boulder Committee
    (1970) Embryonic vertebrate central nervous system: revised terminology. Anat. Rec 166, 257–262
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomasiewicz H.,
    2. Ono K.,
    3. Yee D.,
    4. Thompson C.,
    5. Goridis C.,
    6. Rutishauser U.,
    7. Magnuson T.
    (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11, 1163–1174
    OpenUrlCrossRefPubMedWeb of Science
    1. Venstrom K.,
    2. Reichardt L.
    (1995) 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol. Biol. Cell 6, 419–431
    OpenUrlAbstract/FREE Full Text
    1. Walsh C.,
    2. Cepko C. L.
    (1993) Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362, 632–635
    OpenUrlCrossRefPubMed
    1. Weiss S.,
    2. Reynolds B. A.,
    3. Vescovi A. L.,
    4. Morshead C.,
    5. Craig C. G.,
    6. van der Kooy D.
    (1996) Is there a neural stem cell in the mammalian forebrain?. Trends NeuroSci 19, 387–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Wichterle H.,
    2. Garcia-Verdugo J. M.,
    3. Alvarez-Buylla A.
    (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolfsberg T. G.,
    2. Primakoff P.,
    3. Myles D. G.,
    4. White J. M.
    (1995) ADAM, a novel family of membrane proteins containing ADisintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol 131, 275–278
    OpenUrlFREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neural precursor cell chain migration and division are regulated through different beta1 integrins
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Neural precursor cell chain migration and division are regulated through different beta1 integrins
T.S. Jacques, J.B. Relvas, S. Nishimura, R. Pytela, G.M. Edwards, C.H. Streuli, C. ffrench-Constant
Development 1998 125: 3167-3177;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Neural precursor cell chain migration and division are regulated through different beta1 integrins
T.S. Jacques, J.B. Relvas, S. Nishimura, R. Pytela, G.M. Edwards, C.H. Streuli, C. ffrench-Constant
Development 1998 125: 3167-3177;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992