Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung
M. Weinstein, X. Xu, K. Ohyama, C.X. Deng
Development 1998 125: 3615-3623;
M. Weinstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X. Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Ohyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.X. Deng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mammalian lungs begin as an outpocket of the foregut, and depend on multiple stages of branching morphogenesis and alveogenesis to reach their final form. An examination of fgf receptor gene expression indicated that all four receptors (fgfr-1 to fgfr-4) are expressed in postnatal lungs at varying levels. We show that mice homozygous for a targeted mutation of fgfr-4 exhibited no overt abnormalities in the lungs or any other organ. However, mice doubly homozygous for disruptions of the fgfr-3 and fgfr-4 genes display novel phenotypes not present in either single mutant, which include pronounced dwarfism and lung abnormalities. Lungs of fgfr-3(−/−)fgfr-4(−/−)animals, which are normal at birth, are completely blocked in alveogenesis and do not form secondary septae to delimit alveoli. Consequently, air spaces in the lung are expanded and no alveoli can be seen. The mutant lungs failed to downregulate postnatal elastin deposition despite their normal levels of surfactant expression and cell proliferation. These data revealed a cooperative function of FGFR-3 and FGFR-4 to promote the formation of alveoli during postnatal lung development.

REFERENCES

    1. Arman E.,
    2. Haffner-Krausz R.,
    3. Chen Y.,
    4. Heath J.,
    5. Lonai P.
    (1995) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95, 5082–5087
    OpenUrlAbstract/FREE Full Text
    1. Avraham K. B.,
    2. Givol D.,
    3. Avivi A.,
    4. Yayon A.,
    5. Copeland N. G.,
    6. Jenkins N. A.
    (1994) Mapping of murine fibroblast growth factor receptors refines regions of homology between mouse and human chromosomes. Genomics 21, 656–8
    OpenUrlCrossRefPubMedWeb of Science
    1. Bellusci S.,
    2. Furuta Y.,
    3. Rush M. G.,
    4. Henderson R.,
    5. Winnier G.,
    6. Hogan B. L.
    (1997) Involvement of Sonic hedgehog (Shh) in mouseembryonic lung growth and morphogenesis. Development 124, 53–63
    OpenUrlAbstract
    1. Bellusci S.,
    2. Henderson R.,
    3. Winnier G.,
    4. Oikawa T.,
    5. Hogan B. L.
    (1996) Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122, 1693–702
    OpenUrlAbstract
    1. Bostrom H.,
    2. Willetts K.,
    3. Pekny M.,
    4. Leveen P.,
    5. Lindahl P.,
    6. Hedstrand H.,
    7. Pekna M.,
    8. Hellstrom M.,
    9. Gebre-Medhin S.,
    10. Schalling M.,
    11. Nilsson M.,
    12. Kurland S.,
    13. Tornell J.,
    14. Heath J. K.,
    15. Betsholtz C.
    (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–73
    OpenUrlCrossRefPubMedWeb of Science
    1. Cardoso W. V.,
    2. Itoh A.,
    3. Nogawa H.,
    4. Mason I.,
    5. Brody J. S.
    (1997) FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. Dev. Dynamics 208, 398–405
    OpenUrlCrossRefPubMedWeb of Science
    1. Chellaiah A. T.,
    2. McEwen D. G.,
    3. Werner S.,
    4. Xu J.,
    5. Ornitz D. M.
    (1994) Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem 269, 11620–7
    OpenUrlAbstract/FREE Full Text
    1. Chen F.,
    2. Capecchi M. R.
    (1997) Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. Dev. Biol 181, 186–96
    OpenUrlCrossRefPubMedWeb of Science
    1. Ciruna B. G.,
    2. Schwartz L.,
    3. Harpal K.,
    4. Yamaguchi T. P.,
    5. Rossant J.
    (1997) Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829–41
    OpenUrlAbstract
    1. Coalson J. J.
    (1997) Experimental models of bronchopulmonary dysplasia. Biol. Neonate 71, 35–8
    1. Cohn M. J.,
    2. Izpisua-Belmonte J. C.,
    3. Abud H.,
    4. Heath J. K.,
    5. Tickle C.
    (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Colucci-Guyon E.,
    2. Portier M. M.,
    3. Dunia I.,
    4. Paulin D.,
    5. Pournin S.,
    6. Babinet C.
    (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Colvin J. S.,
    2. Bohne B. A.,
    3. Harding G. W.,
    4. McEwen D. G.,
    5. Ornitz D. M.
    (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet 12, 390–7
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martinez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–8
    OpenUrlCrossRefPubMed
    1. Crossley P. H.,
    2. Minowada G.,
    3. MacArthur C. A.,
    4. Martin G. R.
    (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–36
    OpenUrlCrossRefPubMedWeb of Science
    1. Davis A. P.,
    2. Witte D. P.,
    3. Hsieh-Li H. M.,
    4. Potter S. S.,
    5. Capecchi M. R.
    (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–5
    OpenUrlCrossRefPubMedWeb of Science
    1. de Santi M. M.,
    2. Martorana P. A.,
    3. Cavarra E.,
    4. Lungarella G.
    (1995) Pallid mice with genetic emphysema. Neutrophil elastase burden and elastin loss occur without alteration in the bronchoalveolar lavage cell population. Lab. Invest 73, 40–7
    OpenUrlPubMedWeb of Science
    1. Deng C.,
    2. Bedford M.,
    3. Li C.,
    4. Xu X.,
    5. Yang X.,
    6. Dunmore J.,
    7. Leder P.
    (1997) Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol 185, 42–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng C.,
    2. Wynshaw-Boris A.,
    3. Zhou F.,
    4. Kuo A.,
    5. Leder P.
    (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–21
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng C. X.,
    2. Wynshaw-Boris A.,
    3. Shen M. M.,
    4. Daugherty C.,
    5. Ornitz D.M.,
    6. Leder P.
    (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8, 3045–57
    OpenUrlAbstract/FREE Full Text
    1. Deterding R. R.,
    2. Jacoby C. R.,
    3. Shannon J. M.
    (1996) Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth. Am. J. Physiol 271, 495–505
    OpenUrl
    1. Feldman B.,
    2. Poueymirou W.,
    3. Papaioannou V. E.,
    4. DeChiara T. M.,
    5. Goldfarb M.
    (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–9
    OpenUrlAbstract/FREE Full Text
    1. Floss T.,
    2. Arnold H. H.,
    3. Braun T.
    (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11, 2040–51
    OpenUrlAbstract/FREE Full Text
    1. Fukuda T.,
    2. Kawano H.,
    3. Ohyama K.,
    4. Li H. P.,
    5. Takeda Y.,
    6. Oohira A.,
    7. Kawamura K.
    (1997) Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats. J. Comp. Neurol 382, 141–52
    OpenUrlCrossRefPubMedWeb of Science
    1. Galou M.,
    2. Colucci-Guyon E.,
    3. Ensergueix D.,
    4. Ridet J. L.,
    5. Gimenez y Ribotta M.,
    6. Privat A.,
    7. Babinet C.,
    8. Dupouey P.
    (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J. Cell Biol 133, 853–63
    OpenUrlAbstract/FREE Full Text
    1. Glazer L.,
    2. Shilo B. Z.
    (1991) The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev 5, 697–705
    OpenUrlAbstract/FREE Full Text
    1. Goldfarb M.
    (1996) Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 7, 311–25
    OpenUrlCrossRefPubMed
    1. Grindley J. C.,
    2. Bellusci S.,
    3. Perkins D.,
    4. Hogan B. L.
    (1997) Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev. Biol 188, 337–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Guo L.,
    2. Degenstein L.,
    3. Fuchs E.
    (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 10, 165–75
    OpenUrlAbstract/FREE Full Text
    1. Hautamaki R. D.,
    2. Kobayashi D. K.,
    3. Senior R. M.,
    4. Shapiro S. D.
    (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–4
    OpenUrlAbstract/FREE Full Text
    1. Hebert J. M.,
    2. Rosenquist T.,
    3. Gotz J.,
    4. Martin G. R.
    (1994) FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78, 1017–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Jaakkola S.,
    2. Salmikangas P.,
    3. Nylund S.,
    4. Partanen J.,
    5. Armstrong E.,
    6. Pyrhonen S.,
    7. Lehtovirta P.,
    8. Nevanlinna H.
    (1993) Amplification of fgfr4 gene in human breast and gynecological cancers. Int. J. Cancer 54, 378–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson D. E.,
    2. Williams L. T.
    (1993) Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res 60, 1–41
    OpenUrlPubMedWeb of Science
    1. Kaartinen V.,
    2. Voncken J. W.,
    3. Shuler C.,
    4. Warburton D.,
    5. Bu D.,
    6. Heisterkamp N.,
    7. Groffen J.
    (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet 11, 415–21
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimura S.,
    2. Hara Y.,
    3. Pineau T.,
    4. Fernandez-Salguero P.,
    5. Fox C. H.,
    6. Ward J. M.,
    7. Gonzalez F. J.
    (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10, 60–9
    OpenUrlAbstract/FREE Full Text
    1. Lee T.,
    2. Hacohen N.,
    3. Krasnow M.,
    4. Montell D. J.
    (1996) Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system. Genes Dev 10, 2912–21
    OpenUrlAbstract/FREE Full Text
    1. Mansour S. L.,
    2. Goddard J. M.,
    3. Capecchi M. R.
    (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Mariani T. J.,
    2. Sandefur S.,
    3. Pierce R. A.
    (1997) Elastin in lung development. Exp. Lung Res 23, 131–45
    OpenUrlCrossRefPubMedWeb of Science
    1. Masters J. R.
    (1976) Epithelial-mesenchymal interaction during lung development: the effect of mesenchymal mass. Dev. Biol 51, 98–108
    OpenUrlCrossRefPubMedWeb of Science
    1. McWhirter J. R.,
    2. Goulding M.,
    3. Weiner J. A.,
    4. Chun J.,
    5. Murre C.
    (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development 124, 3221–32
    OpenUrlAbstract
    1. Moens C. B.,
    2. Auerbach A. B.,
    3. Conlon R. A.,
    4. Joyner A. L.,
    5. Rossant J.
    (1992) A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev 6, 691–704
    OpenUrlAbstract/FREE Full Text
    1. Muenke M.,
    2. Schell U.
    (1995) Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet 11, 308–13
    OpenUrlCrossRefPubMedWeb of Science
    1. Niswander L.,
    2. Jeffrey S.,
    3. Martin G. R.,
    4. Tickle C.
    (1994) A positivefeedback loop coordinates growth and patterning in the vertebrate limb [see comments]. Nature 371, 609–12
    OpenUrlCrossRefPubMed
    1. Ohuchi H.,
    2. Nakagawa T.,
    3. Yamamoto A.,
    4. Araga A.,
    5. Ohata T.,
    6. Ishimaru Y.,
    7. Yoshioka H.,
    8. Kuwana T.,
    9. Nohno T.,
    10. Yamasaki M.,
    11. Itoh N.,
    12. Noji S.
    (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–44
    OpenUrlAbstract
    1. Ozawa K.,
    2. Uruno T.,
    3. Miyakawa K.,
    4. Seo M.,
    5. Imamura T.
    (1996) Expression of the fibroblast growth factor family and their receptor family genes during mouse brain development. Brain Res. Mol. Brain Res 41, 279–88
    OpenUrlCrossRefPubMed
    1. Peters K.,
    2. Werner S.,
    3. Liao X.,
    4. Wert S.,
    5. Whitsett J.,
    6. Williams L.
    (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 13, 3296–301
    OpenUrlPubMedWeb of Science
    1. Rich C. B.,
    2. Nugent M. A.,
    3. Stone P.,
    4. Foster J. A.
    (1996) Elastase release of basic fibroblast growth factor in pulmonary fibroblast cultures results in down-regulation of elastin gene transcription. A role for basic fibroblast growth factor in regulating lung repair. J. Biol. Chem 271, 23043–8
    OpenUrlAbstract/FREE Full Text
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic-hedgehog mediates the polarizing activity of the zpa. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Sibilia M.,
    2. Wagner E. F.
    (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor [published erratum appears in Science 1995 Aug 18;269(5226):909]. Science 269, 234–8
    OpenUrlAbstract/FREE Full Text
    1. Simonet W. S.,
    2. DeRose M. L.,
    3. Bucay N.,
    4. Nguyen H. Q.,
    5. Wert S. E.,
    6. Zhou L.,
    7. Ulich T. R.,
    8. Thomason A.,
    9. Danilenko D. M.,
    10. Whitsett J. A.
    (1995) Pulmonary malformation in transgenic mice expressing human keratinocyte growth factor in the lung. Proc. Natl Acad. Sci. USA 92, 12461–5
    OpenUrlAbstract/FREE Full Text
    1. Smallwood P. M.,
    2. Munoz-Sanjuan I.,
    3. Tong P.,
    4. Macke J. P.,
    5. Hendry S. H.,
    6. Gilbert D. J.,
    7. Copeland N. G.,
    8. Jenkins N. A.,
    9. Nathans J.
    (1996) Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl Acad. Sci. USA 93, 9850–7
    OpenUrlAbstract/FREE Full Text
    1. Stark K. L.,
    2. McMahon J. A.,
    3. McMahon A. P.
    (1991) FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113, 641–51
    OpenUrlAbstract
    1. Sutherland D.,
    2. Samakovlis C.,
    3. Krasnow M. A.
    (1996) branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091–101
    OpenUrlCrossRefPubMedWeb of Science
    1. Tybulewicz V. L.,
    2. Crawford C. E.,
    3. Jackson P. K.,
    4. Bronson R. T.,
    5. Mulligan R. C.
    (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Vainikka S.,
    2. Joukov V.,
    3. Klint P.,
    4. Alitalo K.
    (1996) Association of a 85-kDa serine kinase with activated fibroblast growth factor receptor-4. J. Biol. Chem 271, 1270–3
    OpenUrlAbstract/FREE Full Text
    1. Vainikka S.,
    2. Partanen J.,
    3. Bellosta P.,
    4. Coulier F.,
    5. Birnbaum D.,
    6. Basilico C.,
    7. Jaye M.,
    8. Alitalo K.
    (1992) Fibroblast growth factor receptor-4 shows novel features in genomic structure, ligand binding and signal transduction [published erratum appears in EMBO J 1993 Feb;12(2):810]. EMBO J 11, 4273–80
    OpenUrlPubMedWeb of Science
    1. Verdier A. S.,
    2. Mattei M. G.,
    3. Lovec H.,
    4. Hartung H.,
    5. Goldfarb M.,
    6. Birnbaum D.,
    7. Coulier F.
    (1997) Chromosomal mapping of two novel human FGF genes, FGF11 and FGF12. Genomics 40, 151–4
    OpenUrlCrossRefPubMedWeb of Science
    1. Vogel A.,
    2. Rodriguez C.,
    3. Izpisua-Belmonte J. C.
    (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–50
    OpenUrlAbstract
    1. Xu X.,
    2. Weinstein M.,
    3. Li C.,
    4. Naske M.,
    5. Cohen R. I.,
    6. Ornitz D.,
    7. Leder P.,
    8. Deng C.
    (1998) Fibroblast growth factor receptor 2 (FGFR2) is required for placentation and limb bud induction. Development 125, 753–765
    OpenUrlAbstract
    1. Yamaguchi T. P.,
    2. Harpal K.,
    3. Henkemeyer M.,
    4. Rossant J.
    (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8, 3032–44
    OpenUrlAbstract/FREE Full Text
    1. Yamasaki M.,
    2. Miyake A.,
    3. Tagashira S.,
    4. Itoh N.
    (1996) Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem 271, 15918–21
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung
M. Weinstein, X. Xu, K. Ohyama, C.X. Deng
Development 1998 125: 3615-3623;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung
M. Weinstein, X. Xu, K. Ohyama, C.X. Deng
Development 1998 125: 3615-3623;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992