Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function
I.A. Drummond, A. Majumdar, H. Hentschel, M. Elger, L. Solnica-Krezel, A.F. Schier, S.C. Neuhauss, D.L. Stemple, F. Zwartkruis, Z. Rangini, W. Driever, M.C. Fishman
Development 1998 125: 4655-4667;
I.A. Drummond
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Majumdar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Hentschel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Elger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Solnica-Krezel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.F. Schier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.C. Neuhauss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.L. Stemple
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Zwartkruis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. Rangini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Driever
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.C. Fishman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2–2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.

REFERENCES

    1. Armstrong J. F.,
    2. Pritchard-Jones K.,
    3. Bickmore W. A.,
    4. Hastie N. D.,
    5. Bard J. B.
    (1993) The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev 40, 85–97
    OpenUrlCrossRefPubMedWeb of Science
    1. Armstrong P. B.
    (1932) The embryonic origin of function in the pronephros through differentiation and parenchyma-vascular association. Am. J. Anat 51, 157–188
    OpenUrlCrossRef
    1. Brand M.,
    2. Hesenberg C.-P.,
    3. Warga R.,
    4. Pelegri F.,
    5. Karlstrom R. O.,
    6. Beuchle D.,
    7. Picker A.,
    8. Jiang Y.-J.,
    9. Furutani-Seiki M.,
    10. van Eeden F. J. M.,
    11. et al.
    (1996) Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123, 129–142
    OpenUrlAbstract/FREE Full Text
    1. Buckler A. J.,
    2. Pelletier J.,
    3. Haber D. A.,
    4. Glaser T.,
    5. Housman D. E.
    (1991) Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development. Mol. Cell Biol 11, 1707–1712
    OpenUrlAbstract/FREE Full Text
    1. Carroll T. J.,
    2. Vize P. D.
    (1996) Wilms' tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros. Dev. Dyn 206, 131–138
    OpenUrlCrossRefPubMed
    1. Chen J. N.,
    2. Haffter P.,
    3. Odenthal J.,
    4. Vogelsang E.,
    5. Brand M.,
    6. van Eeden F. J. M.,
    7. Furutani-Seiki M.,
    8. Granato M.,
    9. Hammerschmidt M.,
    10. et al.
    (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302
    OpenUrlAbstract/FREE Full Text
    1. Dantzler W. H.
    (1989) Organic acid (or anion) and organic base (or cation) transport by renal tubules of nonmammalian vertebrates. J. Exp. Zool 249, 247–257
    OpenUrlCrossRefPubMed
    1. Dent J. A.,
    2. Polson A. G.,
    3. Klymkowsky M. W.
    (1989) A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 105, 61–74
    OpenUrlAbstract
    1. Dressler G. R.,
    2. Douglass E. C.
    (1992) Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc. Natl Acad. Sci. USA 89, 1179–1183
    OpenUrlAbstract/FREE Full Text
    1. Driever W.,
    2. Solnica-Krezel L.,
    3. Schier A. F.,
    4. Neuhauss S. C. F.,
    5. Malicki J.,
    6. Stemple D. L.,
    7. Stainier D. Y. R.,
    8. Zwartkruis F.,
    9. Abdelilah S.,
    10. Rangini Z.,
    11. et al.
    (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46
    OpenUrlAbstract/FREE Full Text
    1. Drubin D. G.,
    2. Nelson W. J.
    (1996) Origins of cell polarity. Cell 84, 335–344
    OpenUrlCrossRefPubMedWeb of Science
    1. Dudley A. T.,
    2. Lyons K. M.,
    3. Robertson E. J.
    (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9, 2795–2807
    OpenUrlAbstract/FREE Full Text
    1. Fujii T.,
    2. Pichel J. G.,
    3. Taira M.,
    4. Toyama R.,
    5. Dawid I. B.,
    6. Westphal H.
    (1994) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev. Dyn 199, 73–83
    OpenUrlCrossRefPubMedWeb of Science
    1. Haffter P.,
    2. Granato M.,
    3. Brand M.,
    4. Mullins M. C.,
    5. Hammerschmidt M.,
    6. Kane D. A.,
    7. Odenthal J.,
    8. van Eeden F. J. M.,
    9. Jiang Y.-J.,
    10. Heisenberg C.-P.,
    11. et al.
    (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36
    OpenUrlAbstract/FREE Full Text
    1. Hatini V.,
    2. Huh S. O.,
    3. Herzlinger D.,
    4. Soares V. C.,
    5. Lai E.
    (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10, 1467–1178
    OpenUrlAbstract/FREE Full Text
    1. Heller N.,
    2. Brandli A. W.
    (1997) Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. Mech. Dev 69, 83–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Hentschel H.
    (1991). Developing nephrons in adolescent dogfish, Scyliorhinus caniculus (L.), with reference to ultrastructure of early stages, histogenesis of the renal countercurrent system, and nephron segmentation in marine elasmobranchs. Am. J. Anat 190, 309–333
    OpenUrlCrossRefPubMedWeb of Science
    1. Hentschel H.,
    2. Elger M.
    (1996) Functional morphology of the developing pronephric kidney of zebrafish. J. Amer. Soc. Nephrol 7, 1598–.
    OpenUrl
    1. Humphrey C.,
    2. Pittman F.
    (1974) A simple methylene blue-azure II-basic fuchsin stain for epoxy-embedded tissue sections. Stain Technol 49, 9–14
    OpenUrlPubMedWeb of Science
    1. Jaffe O. C.
    (1954) Morphogenesis of the pronephros of the leopard frog (Rana Pipiens). J. Morphology 94, 109–123
    OpenUrlCrossRef
    1. Karavanov A. A.,
    2. Karavanova I.,
    3. Perantoni A.,
    4. Dawid I. B.
    (1998) Expression pattern of the rat Lim-1 homeobox gene suggests a dual role during kidney development. Int. J. Dev. Biol 42, 61–66
    OpenUrlPubMedWeb of Science
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullmann B.,
    5. Schilling T. F.
    (1995) Stages of embryonic development of the zebrafish. Dev. Dyn 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimmel C. B.,
    2. Warga R. M.,
    3. Schilling T. F.
    (1990) Origin and organization of the zebrafish fate map. Development 108, 581–594
    OpenUrlAbstract/FREE Full Text
    1. Krauss S.,
    2. Johansen T.,
    3. Korzh V.,
    4. Fjose A.
    (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113, 1193–1206
    OpenUrlAbstract
    1. Kreidberg J. A.,
    2. Donovan M. J.,
    3. Goldstein S. L.,
    4. Rennke H.,
    5. Shepherd K.,
    6. Jones R. C.,
    7. Jaenisch R.
    (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547
    OpenUrlAbstract
    1. Kreidberg J. A.,
    2. Sariola H.,
    3. Loring J. M.,
    4. Maeda M.,
    5. Pelletier J.,
    6. Housman D.,
    7. Jaenisch R.
    (1993) WT-1 is required for early kidney development. Cell 74, 679–691
    OpenUrlCrossRefPubMedWeb of Science
    1. Leveen P.,
    2. Pekny M.,
    3. Gebre-Medhin S.,
    4. Swolin B.,
    5. Larsson E.,
    6. Betsholtz C.
    (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8, 1875–1887
    OpenUrlAbstract/FREE Full Text
    1. Malicki J.,
    2. Neuhauss S. C. F.,
    3. Schier A. F.,
    4. Solnica-Krezel L.,
    5. Stemple D. L.,
    6. Stainier D. Y. R.,
    7. Abdelilah S.,
    8. Rangini Z.,
    9. Zwartkruis F.,
    10. Driever W.
    (1996) Mutations affecting development of the zebrafish retina. Development 123, 263–273
    OpenUrlAbstract/FREE Full Text
    1. Marshall E. K.,
    2. Smith H. W.
    (1930) The glomerular development of the vertebrate kidney in relation to habitat. Biol. Bull 59, 135–153
    OpenUrlAbstract/FREE Full Text
    1. Miner J. H.,
    2. Sanes J. R.
    (1996) Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J. Cell Biol 135, 1403–1413
    OpenUrlAbstract/FREE Full Text
    1. Miyamoto N.,
    2. Yoshida M.,
    3. Kuratani S.,
    4. Matsuo I.,
    5. Aizawa S.
    (1997) Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664
    OpenUrlAbstract
    1. Moore M. W.,
    2. Klein R. D.,
    3. Farinas I.,
    4. Sauer H.,
    5. Armanini M.,
    6. Phillips H.,
    7. Reichardt L. F.,
    8. Ryan A. M.,
    9. Carver-Moore K.,
    10. Rosenthal A.
    (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller U.,
    2. Wang D.,
    3. Denda S.,
    4. Meneses J. J.,
    5. Pedersen R. A.,
    6. Reichardt L. F.
    (1997) Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88, 603–613
    OpenUrlCrossRefPubMedWeb of Science
    1. Newstead J. D.,
    2. Ford P.
    (1960) Studies on the development of the kidney of the Pacific Salmon, Oncorhynchus forbuscha (Walbaum). 1. The development of the pronephros. Can. J. Zool 36, 15–21
    OpenUrl
    1. Noakes P. G.,
    2. Miner J. H.,
    3. Gautam M.,
    4. Cunningham J. M.,
    5. Sanes J. R.,
    6. Merlie J. P.
    (1995) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat. Genet 10, 400–406
    OpenUrlCrossRefPubMedWeb of Science
    1. Oxtoby E.,
    2. Jowett T.
    (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21, 1087–1095
    OpenUrlAbstract/FREE Full Text
    1. Pfeffer P. L.,
    2. Gerster T.,
    3. Lun K.,
    4. Brand M.,
    5. Busslinger M.
    (1998). Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125, 3063–3074
    OpenUrlAbstract
    1. Pichel J. G.,
    2. Shen L.,
    3. Sheng H. Z.,
    4. Granholm A. C.,
    5. Drago J.,
    6. Grinberg A.,
    7. Lee E. J.,
    8. Huang S. P.,
    9. Saarma M.,
    10. Hoffer B. J.,
    11. et al.
    (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76
    OpenUrlCrossRefPubMed
    1. Puschel A. W.,
    2. Westerfield M.,
    3. Dressler G. R.
    (1992) Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish. Mech. Dev 38, 197–208
    OpenUrlCrossRefPubMedWeb of Science
    1. Sanchez M. P.,
    2. Silos-Santiago I.,
    3. Frisen J.,
    4. He B.,
    5. Lira S. A.,
    6. Barbacid M.
    (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73
    OpenUrlCrossRefPubMed
    1. Schuchardt A.,
    2. D'Agati V.,
    3. Larsson-Blomberg L.,
    4. Costantini F.,
    5. Pachnis V.
    (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret [see comments]. Nature 367, 380–383
    OpenUrlCrossRefPubMedWeb of Science
    1. Semba K.,
    2. Saito-Ueno R.,
    3. Takayama G.,
    4. Kondo M.
    (1996) cDNA cloning and its pronephros-specific expression of the Wilms' tumor suppressor gene, WT1, from Xenopus laevis. Gene 175, 167–72
    OpenUrlCrossRefPubMedWeb of Science
    1. Shawlot W.,
    2. Behringer R. R.
    (1995) Requirement for Lim1 in head-organizer function [see comments]. Nature 374, 425–430
    OpenUrlCrossRefPubMed
    1. Soriano P.
    (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8, 1888–1896
    OpenUrlAbstract/FREE Full Text
    1. Stark K.,
    2. Vainio S.,
    3. Vassileva G.,
    4. McMahon A. P.
    (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683
    OpenUrlCrossRefPubMedWeb of Science
    1. Takeyasu K.,
    2. Tamkun M. M.,
    3. Renaud K. J.,
    4. Fambrough D. M.
    (1988) Ouabain-sensitive (Na+/K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the alpha-subunit of an avian sodium pump. J. Biol. Chem 263, 4347–4354
    OpenUrlAbstract/FREE Full Text
    1. Torra R.,
    2. Badenas C.,
    3. Darnell A.,
    4. Bru C.,
    5. Escorsell A.,
    6. Estivill X.
    (1997) Autosomal dominant polycystic kidney disease with anticipation and Caroli's disease associated with a PKD1 mutation. Rapid communication. Kidney Int 52, 33–38
    OpenUrlPubMedWeb of Science
    1. Torres M.,
    2. Gomez-Pardo E.,
    3. Dressler G. R.,
    4. Gruss P.
    (1995) Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065
    OpenUrlAbstract
    1. Toyama R.,
    2. Dawid I. B.
    (1997) lim6, a novel LIM homeobox gene in the zebrafish: comparison of its expression pattern with lim1. Dev. Dyn 209, 406–417
    OpenUrlCrossRefPubMed
    1. Tytler P.
    (1988) Morphology of the pronephros of the juvenile brown trout, Salmo trutta. J. Morphol 195, 189–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Vize P. D.,
    2. Jones E. A.,
    3. Pfister R.
    (1995) Development of the Xenopus pronephric system. Dev. Biol 171, 531–540
    OpenUrlCrossRefPubMedWeb of Science
    1. Vize P. D.,
    2. Seufert D. W.,
    3. Carroll T. J.,
    4. Wallingford J. B.
    (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev. Biol 188, 189–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson P. D.,
    2. Sherwood A. C.,
    3. Palla K.,
    4. Du J.,
    5. Watson R.,
    6. Norman J. T.
    (1991) Reversed polarity of Na(+)/K(+)-ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am. J. Physiol 260, 420–430
    OpenUrl
    1. Zhou J.,
    2. Barker D. F.,
    3. Hostikka S. L.,
    4. Gregory M. C.,
    5. Atkin C. L.,
    6. Tryggvason K.
    (1991) Single base mutation in alpha 5(IV) collagen chain gene converting a conserved cysteine to serine in Alport syndrome. Genomics 9, 10–18
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function
I.A. Drummond, A. Majumdar, H. Hentschel, M. Elger, L. Solnica-Krezel, A.F. Schier, S.C. Neuhauss, D.L. Stemple, F. Zwartkruis, Z. Rangini, W. Driever, M.C. Fishman
Development 1998 125: 4655-4667;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function
I.A. Drummond, A. Majumdar, H. Hentschel, M. Elger, L. Solnica-Krezel, A.F. Schier, S.C. Neuhauss, D.L. Stemple, F. Zwartkruis, Z. Rangini, W. Driever, M.C. Fishman
Development 1998 125: 4655-4667;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992