Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development
B. Mascrez, M. Mark, A. Dierich, N.B. Ghyselinck, P. Kastner, P. Chambon
Development 1998 125: 4691-4707;
B. Mascrez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Mark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Dierich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.B. Ghyselinck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Kastner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Chambon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We have engineered a mouse mutation that specifically deletes the C-terminal 18 amino acid sequence of the RXRalpha protein. This deletion corresponds to the last helical alpha structure (H12) of the ligand-binding domain (LBD), and includes the core of the Activating Domain of the Activation Function 2 (AF-2 AD core) that is thought to be crucial in mediating ligand-dependent transactivation by RXRalpha. The homozygous mutants (RXRalpha af2(o)), which die during the late fetal period or at birth, exhibit a subset of the abnormalities previously observed in RXRalpha −/− mutants, often with incomplete penetrance. In marked contrast, RXRalpha af2(o)/RXRbeta −/− and RXRalpha af2(o)/RXRbeta −/− /RXRgamma −/− compound mutants display a large array of malformations, which nearly recapitulate the full spectrum of the defects that characterize the fetal vitamin A-deficiency (VAD) syndrome and were previously found in RAR single and compound mutants, as well as in RXRalpha/RAR(alpha, beta or gamma) compound mutants. Analysis of RXRalpha af2(o)/RAR(alpha, beta or gamma) compound mutants also revealed that they exhibit many of the defects observed in the corresponding RXR alpha/RAR compound mutants. Together, these results demonstrate the importance of the integrity of RXR AF-2 for the developmental functions mediated by RAR/RXR heterodimers, and hence suggest that RXR ligand-dependent transactivation is instrumental in retinoid signalling during development.

REFERENCES

    1. Andrews N. C.,
    2. Faller D. V.
    (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19, 2499–.
    OpenUrlFREE Full Text
    1. Apfel C. M.,
    2. Kamber M.,
    3. Klaus M.,
    4. Mohr P.,
    5. Keidel S.,
    6. Le Motte P. K.
    (1995) Enhancement of HL-60 differentiation by a new class of retinoids with selective activity on retinoid X receptor. J. Biol. Chem 270, 30765–30772
    OpenUrlAbstract/FREE Full Text
    1. Bavik C.,
    2. Ward S. J.,
    3. Chambon P.
    (1996) Developmental abnormalities in cultured mouse embryos deprived of retinoic by inhibition of yolk-sac retinol binding protein synthesis. Proc. Natl. Acad. Sci. USA 93, 3110–3114
    OpenUrlAbstract/FREE Full Text
    1. Bhattacharyya N.,
    2. Dey A.,
    3. Minucci S.,
    4. Zimmer A.,
    5. John S.,
    6. Hager G.,
    7. Ozato K.
    (1997) Retinoid-induced chromatin structure alterations in the retinoic acid receptor beta2 promoter. Mol. Cell. Biol 17, 6481–6490
    OpenUrlAbstract/FREE Full Text
    1. Blomhoff R.
    (1994) Transport and metabolism of vitamin A. Nutr. Rev 52, 13–.
    OpenUrl
    1. Blumberg B.,
    2. Kang H.,
    3. Bolado J., Jr.,
    4. Chen H.,
    5. Craig A. G.,
    6. Moreno T. A.,
    7. Umesono K.,
    8. Perlmann T.,
    9. De Robertis E. M.,
    10. Evans R. M.
    (1998) BXR, an embryonic orphan nuclear receptor activated by a novel class of endogenous benzoate metabolites. Genes Dev 12, 1269–1277
    OpenUrlAbstract/FREE Full Text
    1. Botling J.,
    2. Castro D. S.,
    3. Oberg F.,
    4. Nilsson K.,
    5. Perlmann T.
    (1997) Retinoic acid receptor/retinoid X receptor heterodimers can be activated through both subunits providing a basis for synergistic transactivation and cellular differentiation. J. Biol. Chem 272, 9443–9449
    OpenUrlAbstract/FREE Full Text
    1. Bourguet W.,
    2. Ruff M.,
    3. Chambon P.,
    4. Gronemeyer H.,
    5. Moras D.
    (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375, 377–382
    OpenUrlCrossRefPubMedWeb of Science
    1. Boylan J. F.,
    2. Lohnes D.,
    3. Taneja R.,
    4. Chambon P.,
    5. Gudas L. J.
    (1993) Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc. Natl. Acad. Sci. USA 90, 9601–9605
    OpenUrlAbstract/FREE Full Text
    1. Boylan J. F.,
    2. Lufkin T.,
    3. Achkar C. C.,
    4. Taneja R.,
    5. Chambon P.,
    6. Gudas L. J.
    (1995) Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol. Cell. Biol 15, 843–851
    OpenUrlAbstract/FREE Full Text
    1. Chambon P.
    (1994) The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell. Biol 5, 115–125
    OpenUrlCrossRefPubMed
    1. Chambon P.
    (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10, 940–954
    OpenUrlAbstract
    1. Chen J. Y.,
    2. Clifford J.,
    3. Zusi C.,
    4. Starrett J.,
    5. Tortolani D.,
    6. Ostrowski J.,
    7. Reczek P. R.,
    8. Chambon P.,
    9. Gronemeyer H.
    (1996) Two distinct actions of retinoid-receptor ligands. Nature 382, 819–822
    OpenUrlCrossRefPubMed
    1. Chen Z.,
    2. Iyer J.,
    3. Bourguet W.,
    4. Held P.,
    5. Mioskowski C.,
    6. Lebeau L.,
    7. Noy N.,
    8. Chambon P.,
    9. Gronemeyer H.
    (1998) Ligand-and DNA-induced Dissociation of RXR Tetramers. J. Mol. Biol 275, 55–65
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiba H.,
    2. Clifford J.,
    3. Metzger D.,
    4. Chambon P.
    (1997) Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol. Cell. Biol 17, 3013–3020
    OpenUrlAbstract/FREE Full Text
    1. Chiba H.,
    2. Clifford J.,
    3. Metzger D.,
    4. Chambon P.
    (1997) Specific and redundant functions of retinoid X Receptor/Retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells. J. Cell. Biol 139, 735–747
    OpenUrlAbstract/FREE Full Text
    1. Clifford J.,
    2. Chiba H.,
    3. Sobieszczuk D.,
    4. Metzger D.,
    5. Chambon P.
    (1996) RXRalpha-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. EMBO J 15, 4142–4155
    OpenUrlPubMedWeb of Science
    1. Costaridis P.,
    2. Horton C.,
    3. Zeitlinger J.,
    4. Holder N.,
    5. Maden M.
    (1996) Endogenous retinoids in the zebrafish embryo and adult. Dev. Dyn 205, 41–51
    OpenUrlCrossRefPubMedWeb of Science
    1. Defacque H.,
    2. Sevilla C.,
    3. Piquemal D.,
    4. Rochette-Egly C.,
    5. Marti J.,
    6. Commes T.
    (1997) Potentiation of VD-induced monocytic leukemia cell differentiation by retinoids involves both RAR-and RXR-signaling pathways. Leukemia 11, 221–227
    1. Dey A.,
    2. Ozato K.
    (1997) Genomic footprinting of retinoic acid regulated promoters in embryonal carcinoma cells. Methods 11, 197–204
    OpenUrlCrossRefPubMed
    1. Dickman E.D.,
    2. Thaller C.,
    3. Smith S.M.
    (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124, 3111–3121
    OpenUrlAbstract
    1. Dolle P.,
    2. Fraulob V.,
    3. Kastner P.,
    4. Chambon P.
    (1994) Developmental expression of murine retinoid X receptor (RXR) genes. Mech. Dev 45, 91–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Dupe V.,
    2. Davenne M.,
    3. Brocard J.,
    4. Dolle P.,
    5. Mark M.,
    6. Dierich A.,
    7. Chambon P.,
    8. Rijli F. M.
    (1997) In vivo functional analysis of the Hoxa-1 3retinoic acid response element (3 RARE). Development 124, 399–410
    OpenUrlAbstract
    1. Durand B.,
    2. Saunders M.,
    3. Gaudon C.,
    4. Roy B.,
    5. Losson R.,
    6. Chambon P.
    (1994) Activation function 2 (AF-2) of retinoic acid receptor and 9- cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J 13, 5370–5382
    OpenUrlPubMedWeb of Science
    1. Dyson E.,
    2. Sucov H. M.,
    3. Kubalak S. W.,
    4. Schmid-Schonbein G. W.,
    5. De Lano F. A.,
    6. Evans R. M.,
    7. Ross J., Jr.,
    8. Chien K. R.
    (1995) Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha−/−mice. Proc. Natl. Acad. Sci. USA 92, 7386–7390
    OpenUrlAbstract/FREE Full Text
    1. Elmazar M. M.,
    2. Ruhl R.,
    3. Reichert U.,
    4. Shroot B.,
    5. Nau H.
    (1997) RARalpha-mediated teratogenicity in mice is potentiated by an RXR agonist and reduced by an RAR antagonist: dissection of retinoid receptor-induced pathways. Toxicol. Appl. harmacol 146, 21–28
    OpenUrlCrossRefPubMedWeb of Science
    1. Forman B. M.,
    2. Umesono K.,
    3. Chen J.,
    4. Evans R. M.
    (1995) Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81, 541–550
    OpenUrlCrossRefPubMedWeb of Science
    1. Forrest D.,
    2. Erway L. C.,
    3. Ng L.,
    4. Altschuler R.,
    5. Curran T.
    (1996) Thyroid hormone receptor beta is essential for development of auditory function. Nat. Genet 13, 354–357
    OpenUrlCrossRefPubMedWeb of Science
    1. Fraichard A.,
    2. Chassande O.,
    3. Plateroti M.,
    4. Roux J. P.,
    5. Trouillas J.,
    6. Dehay C.,
    7. Legrand C.,
    8. Gauthier K.,
    9. Kedinger M.,
    10. Malaval L.,
    11. et al.
    (1997) The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 16, 4412–4420
    OpenUrlAbstract
    1. Ghyselinck N. B.,
    2. Dupe V.,
    3. Dierich A.,
    4. Messaddeq N.,
    5. Garnier J. M.,
    6. Rochette-Egly C.,
    7. Chambon P.,
    8. Mark M.
    (1997) Role of the retinoic acid receptor beta (RARbeta) during mouse development. Int. J. Dev. Biol 41, 425–447
    OpenUrlPubMedWeb of Science
    1. Giannini G.,
    2. Dawson M. I.,
    3. Zhang X.,
    4. Thiele C. J.
    (1997) Activation of three distinct RXR/RAR heterodimers induces growth arrest and differentiation of neuroblastoma cells. J. Biol. Chem 272, 26693–26701
    OpenUrlAbstract/FREE Full Text
    1. Giguere V.
    (1994) Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr. Rev 15, 61–79
    OpenUrlCrossRefPubMedWeb of Science
    1. Gronemeyer H.,
    2. Laudet V.
    (1995) Transcription factors 3: nuclear receptors. Protein Profile 2, 1173–1308
    OpenUrlPubMedWeb of Science
    1. Gruber P. J.,
    2. Kubalak S. W.,
    3. Pexieder T.,
    4. Sucov H. M.,
    5. Evans R. M.,
    6. Chien K. R.
    (1996) RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J. Clin. Invest 98, 1332–1343
    OpenUrlCrossRefPubMedWeb of Science
    1. Gu H.,
    2. Zou Y. R.,
    3. Rajewsky K.
    (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164
    OpenUrlCrossRefPubMedWeb of Science
    1. Gudas L. J.
    (1994) Retinoids and vertebrate development. J. Biol. Chem 269, 15399–15402
    OpenUrlAbstract/FREE Full Text
    1. Heine U. I.,
    2. Roberts A. B.,
    3. Munoz E. F.,
    4. Roche N. S.,
    5. Sporn M. B.
    (1985) Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arc 50, 135–152
    OpenUrlPubMedWeb of Science
    1. Horn V.,
    2. Minucci S.,
    3. Ogryzko V. V.,
    4. Adamson E. D.,
    5. Howard B. H.,
    6. Levin A. A.,
    7. Ozato K.
    (1996) RAR and RXR selective ligandscooperatively induce apoptosis and neuronal differentiation in P19 embryonal carcinoma cells. FASEB J 10, 1071–1077
    OpenUrlAbstract
    1. Joseph B.,
    2. Lefebvre O.,
    3. Mereau-Richard C.,
    4. Danze P. M.,
    5. Belin-Plancot M. T.,
    6. Formstecher P.
    (1998) Evidence for the involvement of both retinoic acid receptor-and retinoic X receptor-dependent signaling pathways in the induction of tissue transglutaminase and apoptosis in the human myeloma cell line RPMI 8226. Blood 91, 2423–2432
    OpenUrlAbstract/FREE Full Text
    1. Kastner P.,
    2. Grondona J. M.,
    3. Mark M.,
    4. Gansmuller A.,
    5. Le Meur M.,
    6. Decimo D.,
    7. Vonesch J. L.,
    8. Dolle P.,
    9. Chambon P.
    (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78, 987–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Kastner P.,
    2. Mark M.,
    3. Chambon P.
    (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life?. Cell 83, 859–869
    OpenUrlCrossRefPubMedWeb of Science
    1. Kastner P.,
    2. Mark M.,
    3. Leid M.,
    4. Gansmuller A.,
    5. Chin W.,
    6. Grondona J. M.,
    7. Decimo D.,
    8. Krezel W.,
    9. Dierich A.,
    10. Chambon P.
    (1996) Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev 10, 80–92
    OpenUrlAbstract/FREE Full Text
    1. Kastner P.,
    2. Mark M.,
    3. Ghyselinck N.,
    4. Krezel W.,
    5. Dupe V.,
    6. Grondona J. M.,
    7. Chambon P.
    (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124, 313–326
    OpenUrlAbstract
    1. Kastner P.,
    2. Messaddeq N.,
    3. Mark M.,
    4. Wendling O.,
    5. Grondona J.,
    6. Ward S.,
    7. Ghyselinck N.,
    8. Chambon P.
    (1997) Vitamin A deficiency and mutations of RXR(alpha), RXR(beta) and RAR(alpha) lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124, 4749–4758
    OpenUrlAbstract
    1. Kersten S.,
    2. Dawson M. I.,
    3. Lewis B. A.,
    4. Noy N.
    (1996) Individual subunits of heterodimers comprised of retinoic acid and retinoid X receptors interact with their ligands independently. Biochemistry 35, 3816–3824
    OpenUrlCrossRefPubMed
    1. Kliewer S. A.,
    2. Moore J. T.,
    3. Wade L.,
    4. Staudinger J. L.,
    5. Watson M. A.,
    6. Jones S. A.,
    7. McKee D. D.,
    8. Oliver B. B.,
    9. Willson T. M.,
    10. Zetterstrom R. H.,
    11. et al.
    (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Krezel W.,
    2. Dupe V.,
    3. Mark M.,
    4. Dierich A.,
    5. Kastner P.,
    6. Chambon P.
    (1996) RXR gamma null mice are apparently normal and compound RXR alpha +/−/RXR beta−/−/RXR gamma−/−mutant mice are viable. Proc. Natl. Acad. Sci. USA 93, 9010–9014
    OpenUrlAbstract/FREE Full Text
    1. Krezel W.,
    2. Ghyselinck N.,
    3. Samad T. A.,
    4. Dupe V.,
    5. Kastner P.,
    6. Borrelli E.,
    7. Chambon P.
    (1998) Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279, 863–867
    OpenUrlAbstract/FREE Full Text
    1. Kurokawa R.,
    2. Di Renzo J.,
    3. Boehm M.,
    4. Sugarman J.,
    5. Gloss B.,
    6. Rosenfeld M. G.,
    7. Heyman R. A.,
    8. Glass C. K.
    (1994) Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371, 528–531
    OpenUrlCrossRefPubMedWeb of Science
    1. La Vista-Picard N.,
    2. Hobbs P. D.,
    3. Pfahl M.,
    4. Dawson M. I.
    (1996) The receptor-DNA complex determines the retinoid response: a mechanism for the diversification of the ligand signal. Mol. Cell. Biol 16, 4137–4146
    OpenUrlAbstract/FREE Full Text
    1. Leblanc B. P.,
    2. Stunnenberg H. G.
    (1995) 9-cis retinoic acid signaling: changing partners causes some excitement. Genes Dev 9, 1811–1816
    OpenUrlFREE Full Text
    1. Lee S. L.,
    2. Wesselschmidt R. L.,
    3. Linette G. P.,
    4. Kanagawa O.,
    5. Russell J. H.,
    6. Milbrandt J.
    (1995) Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 269, 532–535
    OpenUrlAbstract/FREE Full Text
    1. Lee S. S.,
    2. Pineau T.,
    3. Drago J.,
    4. Lee E. J.,
    5. Owens J. W.,
    6. Kroetz D. L.,
    7. Fernandez-Salguero P. M.,
    8. Wetphal H.,
    9. Gonzalez F. J.
    (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotroic effects of peroxisome proliferators. Mol. Cell. Biol 15, 3012–3022
    OpenUrlAbstract/FREE Full Text
    1. Leid M.,
    2. Kastner P.,
    3. Chambon P.
    (1992) Multiplicity generates diversity in the retinoic acid signalling pathways. Trends. Biochem. Sci 17, 427–433
    OpenUrlCrossRefPubMedWeb of Science
    1. Leng X.,
    2. Blanco J.,
    3. Tsai S. Y.,
    4. Ozato K.,
    5. O'Malley B. W.,
    6. Tsai M. J.
    (1995) Mouse retinoid X receptor contains a separable ligand-binding and transactivation domain in its E region. Mol. Cell. Biol 15, 255–263
    OpenUrlAbstract/FREE Full Text
    1. Li Y. C.,
    2. Pirro A. E.,
    3. Amling M.,
    4. Delling G.,
    5. Baron R.,
    6. Bronson R.,
    7. Demay M. B.
    (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc. Natl. Acad. Sci. USA 94, 9831–9835
    OpenUrlAbstract/FREE Full Text
    1. Lohnes D.,
    2. Kastner P.,
    3. Dierich A.,
    4. Mark M.,
    5. Le Meur M.,
    6. Chambon P.
    (1993) Function of retinoic acid receptor gamma in the mouse. Cell 73, 643–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Lohnes D.,
    2. Mark M.,
    3. Mendelsohn C.,
    4. Dolle P.,
    5. Dierich A.,
    6. Gorry P.,
    7. Gansmuller A.,
    8. Chambon P.
    (1994) Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–2748
    OpenUrlAbstract
    1. Lotan R.
    (1980) Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim. Biophys. Acta 605, 33–91
    OpenUrlPubMed
    1. Lotan R.,
    2. Dawson M. I.,
    3. Zou C. C.,
    4. Jong L.,
    5. Lotan D.,
    6. Zou C. P.
    (1995) Enhanced efficacy of combinations of retinoic acid-and retinoid X receptor-selective retinoids and alpha-interferon in inhibition of cervical carcinoma cell proliferation. Cancer Res 55, 232–236
    OpenUrlAbstract/FREE Full Text
    1. Lu H. C.,
    2. Eichele G.,
    3. Thaller C.
    (1997) Ligand-bound RXR can mediate retinoid signal transduction during embryogenesis. Development 124, 195–203
    OpenUrlAbstract
    1. Lufkin T.,
    2. Dierich A.,
    3. Le Meur M.,
    4. Mark M.,
    5. Chambon P.
    (1991). Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119
    OpenUrlCrossRefPubMedWeb of Science
    1. Lufkin T.,
    2. Mark M.,
    3. Hart C. P.,
    4. Dolle P.,
    5. Le Meur M.,
    6. Chambon P.
    (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359, 835–841
    OpenUrlCrossRefPubMed
    1. Luo J.,
    2. Sucov H. M.,
    3. Bader J. A.,
    4. Evans R. M.,
    5. Giguere V.
    (1996) Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions for multiple RAR beta isoforms. Mech. Dev 55, 33–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Gale E.,
    3. Kostetskii I.,
    4. Zile M.
    (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol 6, 417–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Graham A.,
    3. Gale E.,
    4. Rollinson C.,
    5. Zile M.
    (1997) Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development 124, 2799–2805
    OpenUrlAbstract
    1. Mangelsdorf D. J.,
    2. Borgmeyer U.,
    3. Heyman R. A.,
    4. Zhou J. Y.,
    5. Ong E. S.,
    6. Oro A. E.,
    7. Kakizuka A.,
    8. Evans R. M.
    (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6, 329–344
    OpenUrlAbstract/FREE Full Text
    1. Mangelsdorf D. J.,
    2. Evans R. M.
    (1995) The RXR heterodimers and orphan receptors. Cell 83, 841–850
    OpenUrlCrossRefPubMedWeb of Science
    1. Mangelsdorf D. J.,
    2. Thummel C.,
    3. Beato M.,
    4. Herrlich P.,
    5. Schutz G.,
    6. Umesono K.,
    7. Blumberg B.,
    8. Kastner P.,
    9. Mark M.,
    10. Chambon P.
    (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835–839
    OpenUrlCrossRefPubMedWeb of Science
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J. L.,
    4. Ruberte E.,
    5. Olivo J. C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Mendelsohn C.,
    2. Ruberte E.,
    3. Le Meur M.,
    4. Morriss-Kay G.,
    5. Chambon P.
    (1991) Developmental analysis of the retinoic acid-inducible RAR-beta 2 promoter in transgenic animals. Development 113, 723–734
    OpenUrlAbstract
    1. Mendelsohn C.,
    2. Lohnes D.,
    3. Decimo D.,
    4. Lufkin T.,
    5. Le Meur M.,
    6. Chambon P.,
    7. Mark M.
    (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771
    OpenUrlAbstract
    1. Metzger D.,
    2. Clifford J.,
    3. Chiba H.,
    4. Chambon P.
    (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995
    OpenUrlAbstract/FREE Full Text
    1. Minucci S.,
    2. Ozato K.
    (1996) Retinoid receptors in transcriptional regulation. Curr. Opin. Genet. Dev 6, 567–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Minucci S.,
    2. Leid M.,
    3. Toyama R.,
    4. Saint-Jeannet J. P.,
    5. Peterson V. J.,
    6. Horn V.,
    7. Ishmael J. E.,
    8. Bhattacharyya N.,
    9. Dey A.,
    10. Dawid I. B.,
    11. et al.
    (1997) Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol. Cell. Biol 17, 644–655
    OpenUrlAbstract/FREE Full Text
    1. Mukherjee R.,
    2. Davies P.J.,
    3. Crombie D.L.,
    4. Bischoff E. D.,
    5. Cesario R. M.,
    6. Jow L.,
    7. Hamann L. G.,
    8. Boehm M. F.,
    9. Mondon C. E.,
    10. Nadzan A. M.,
    11. Paterniti J. R., Jr.,
    12. Heyman R. A.
    (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386, 407–410
    OpenUrlCrossRefPubMedWeb of Science
    1. Nagpal S.,
    2. Saunders M.,
    3. Kastner P.,
    4. Durand B.,
    5. Nakshatri H.,
    6. Chambon P.
    (1992) Promoter context-and response element-dependentspecificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70, 1007–1019
    OpenUrlCrossRefPubMedWeb of Science
    1. Nagpal S.,
    2. Friant S.,
    3. Nakshatri H.,
    4. Chambon P.
    (1993) RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J 12, 2349–2360
    OpenUrlPubMedWeb of Science
    1. Nagy L.,
    2. Thomazy V. A.,
    3. Chandraratna R. A.,
    4. Heyman R. A.,
    5. Davies P. J.
    (1996) Retinoid-regulated expression of BCL-2 and tissue transglutaminase during the differentiation and apoptosis of human myeloid leukemia (HL-60) cells. Leuk. Res 20, 499–505
    OpenUrlCrossRefPubMedWeb of Science
    1. Perlmann T.,
    2. Jansson L.
    (1995) A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev 9, 769–782
    OpenUrlAbstract/FREE Full Text
    1. Perlmann T.,
    2. Evans R. M.
    (1997) Nuclear receptors in Sicily: all in the famiglia. Cell 90, 391–397
    OpenUrlCrossRefPubMedWeb of Science
    1. Renaud J. P.,
    2. Rochel N.,
    3. Ruff M.,
    4. Vivat V.,
    5. Chambon P.,
    6. Gronemeyer H.,
    7. Moras D.
    (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689
    OpenUrlCrossRefPubMed
    1. Rochette-Egly C.,
    2. Lutz Y.,
    3. Pfister V.,
    4. Heyberger S.,
    5. Scheuer I.,
    6. Chambon P.,
    7. Gaub M. P.
    (1994) Detection of retinoid X receptors using specific monoclonal and polyclonal antibodies. Biochem. Biophys. Res Commun 204, 525–536
    OpenUrlCrossRefPubMedWeb of Science
    1. Roy B.,
    2. Taneja R.,
    3. Chambon P.
    (1995) Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor alpha (RAR alpha)-, RAR beta-, or RAR gamma-selective ligand in combination with a retinoid X receptor-specific ligand. Mol. Cell. Biol 15, 6481–6487
    OpenUrlAbstract/FREE Full Text
    1. Solomin L.,
    2. Johansson C. B.,
    3. Zetterström R. H.,
    4. Bissonnette R. P.,
    5. Heyman R. A.,
    6. Olson L.,
    7. Lendahl U.,
    8. Frisen J.,
    9. Perlmann T.
    (1998) Retinoid X receptor signaling in the developing spinal cord. Nature, 395, 398–402
    OpenUrlCrossRefPubMed
    1. Sucov H. M.,
    2. Dyson E.,
    3. Gumeringer C. L.,
    4. Price J.,
    5. Chien K. R.,
    6. Evans R. M.
    (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8, 1007–1018
    OpenUrlAbstract/FREE Full Text
    1. Taneja R.,
    2. Roy B.,
    3. Plassat J. L.,
    4. Zusi C. F.,
    5. Ostrowski J.,
    6. Reczek P. R.,
    7. Chambon P.
    (1996) Cell-type and promoter-context dependent retinoic acid receptor (RAR) redundancies for RAR beta 2 and Hoxa-1 activation in F9 and P19 cells can be artefactually generated by gene knockouts. Proc. Natl. Acad. Sci. USA 93, 6197–6202
    OpenUrlAbstract/FREE Full Text
    1. Twal W.,
    2. Roze L.,
    3. Zile M. H.
    (1995) Anti-retinoic acid monoclonal antibody localizes all-trans-retinoic acid in target cells and blocks normal development in early quail embryo. Dev. Biol 168, 225–234
    OpenUrlCrossRefPubMedWeb of Science
    1. Valcarcel R.,
    2. Holz H.,
    3. Jimenez C. G.,
    4. Barettino D.,
    5. Stunnenberg H. G.
    (1994) Retinoid-dependent in vitro transcription mediated by the RXR/RAR heterodimer. Genes Dev 8, 3068–3079
    OpenUrlAbstract/FREE Full Text
    1. Vivat V.,
    2. Zechel C.,
    3. Wurtz J. M.,
    4. Bourguet W.,
    5. Kagechika H.,
    6. Umemiya H.,
    7. Shudo K.,
    8. Moras D.,
    9. Gronemeyer H.,
    10. Chambon P.
    (1997) A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers. EMBO J 16, 5697–5709
    OpenUrlAbstract
    1. Wilson J. G.,
    2. Warkany J.
    (1948) Malformations of the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat 83, 357–407
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson J. G.,
    2. Warkany J.
    (1949) Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am. J. Anat 85, 113–155
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson J. G.,
    2. Roth C. B.,
    3. Warkany J.
    (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J. Anat 92, 189–217
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolbach S. B.,
    2. Howe P. R.
    (1925) Tissue changes following deprivation of fat-soluble A vitamin. J. Exp. Med 42, 753–777
    OpenUrlAbstract
    1. Wurtz J. M.,
    2. Bourguet W.,
    3. Renaud J. P.,
    4. Vivat V.,
    5. Chambon P.,
    6. Moras D.,
    7. Gronemeyer H.
    (1996) A canonical structure for the ligand-binding domain of nuclear receptors [see comments] [published erratum appears in Nat Struct Biol 1996 Feb; 3(2):206]. Nat. Struct. Biol 3, 87–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Yoshizawa T.,
    2. Handa Y.,
    3. Uematsu Y.,
    4. Takeda S.,
    5. Sekine K.,
    6. Yoshihara Y.,
    7. Kawakami T.,
    8. Arioka K.,
    9. Sato H.,
    10. Uchiyama Y.,
    11. et al.
    (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat. Genet 16, 391–396
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang X. K.,
    2. Salbert G.,
    3. Lee M. O.,
    4. Pfahl M.
    (1994) Mutations that alter ligand-induced switches and dimerization activities in the retinoid X receptor. Mol. Cell. Biol 14, 4311–4323
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development
B. Mascrez, M. Mark, A. Dierich, N.B. Ghyselinck, P. Kastner, P. Chambon
Development 1998 125: 4691-4707;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development
B. Mascrez, M. Mark, A. Dierich, N.B. Ghyselinck, P. Kastner, P. Chambon
Development 1998 125: 4691-4707;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992