Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Regulation of neuronal specification in the zebrafish spinal cord by Delta function
B. Appel, J.S. Eisen
Development 1998 125: 371-380;
B. Appel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.S. Eisen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The vertebrate spinal cord consists of a large number of different cell types in close proximity to one another. The identities of these cells appear to be specified largely by information acquired from their local environments. We report here that local cell-cell interactions, mediated by zebrafish homologues of the Drosophila melanogaster neurogenic gene, Delta, regulate specification of diverse neuronal types in the ventral spinal cord. We describe identification of a novel zebrafish Delta gene expressed specifically in the nervous system and show, by expressing a dominant negative form of Delta protein in embryos, that Delta proteins mediate lateral inhibition in the zebrafish spinal cord. Furthermore, we find that Delta function is important for specification of a variety of spinal cord neurons, suggesting that lateral inhibition serves to diversify neuronal fate during development of the vertebrate spinal cord.

REFERENCES

    1. Appel B.,
    2. Korzh V.,
    3. Glasgow E.,
    4. Thor S.,
    5. Edlund T.,
    6. Dawid I. B.,
    7. Eisen J. S.
    (1995) Motoneuron fate specification revealed by patterned LIM homeobox gene expression in zebrafish. Development 121, 4117–4125
    OpenUrlAbstract
    1. Artavanis-Tsakonas S.,
    2. Matsuno K.,
    3. Fortini M. E.
    (1995) Notch signaling. Science 268, 225–232
    OpenUrlAbstract/FREE Full Text
    1. Austin C. P.,
    2. Feldman D. E.,
    3. Ida J. A., Jr.,
    4. Cepko C. L.
    (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121, 3637–3650
    OpenUrlAbstract
    1. Beattie C. E.,
    2. Hatta K.,
    3. Halpern M. E.,
    4. Liu H.,
    5. Eisen J. S.,
    6. Kimmel C. B.
    (1997) Temporal separation in the specification of primary and secondary motoneurons in zebrafish. Dev. Biol 187, 171–182
    OpenUrlCrossRefPubMedWeb of Science
    1. Bernhardt R. R.,
    2. Chitnis A. B.,
    3. Lindamer L.,
    4. Kuwada J. Y.
    (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J. Comp. Neurol 302, 603–616
    OpenUrlCrossRefPubMedWeb of Science
    1. Bernhardt R. R.,
    2. Patel C. K.,
    3. Wilson S. W.,
    4. Kuwada J. Y.
    (1992) Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J. Comp. Neurol 326, 263–272
    OpenUrlCrossRefPubMedWeb of Science
    1. Bierkamp C.,
    2. Campos-Ortega J. A.
    (1993) A zebrafish homologue of the Drosophila neurogenic gene Notch and its pattern of transcription during early embryogenesis. Mech. Dev 43, 87–100
    OpenUrlCrossRefPubMedWeb of Science
    1. Bovolenta P.,
    2. Dodd J.
    (1991) Perturbation of neuronal differentiation and axon guidance in the spinal cord of mouse embryos lacking a floor plate: analysis of Danforth's short-tail mutation. Development 113, 625–639
    OpenUrlAbstract
    1. Cagan R. L.,
    2. Ready D. F.
    (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3, 1099–1112
    OpenUrlAbstract/FREE Full Text
    1. Campos-Ortega J. A.
    (1995) Genetic mechanisms of early neurogenesis in Drosophila melanogaster. Mol. Neurobiol 10, 75–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Cavener D. R.
    (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res 15, 1353–1361
    OpenUrlAbstract/FREE Full Text
    1. Cepko C. L.,
    2. Austin C. P.,
    3. Yang X.,
    4. Alexiades M.,
    5. Ezzeddine D.
    (1996) Cell fate determination in the vertebrate retina. Proc. Nat. Acad. Sci. USA 93, 589–595
    OpenUrlAbstract/FREE Full Text
    1. Chitnis A.,
    2. Henrique D.,
    3. Lewis J.,
    4. Ish Horowicz D.,
    5. Kintner C.
    (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766
    OpenUrlCrossRefPubMedWeb of Science
    1. Coffman C. R.,
    2. Skoglund P.,
    3. Harris W. A.,
    4. Kintner C. R.
    (1993) Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659–671
    OpenUrlCrossRefPubMedWeb of Science
    1. Dornseifer P.,
    2. Takke C.,
    3. Campos-Ortega J. A.
    (1997) Overexpression of a zebrafish homologue of the Drosophila neurogenic gene Delta perturbs differentiation of primary neurons and somite development. Mech. Dev 63, 159–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Dorsky R. I.,
    2. Chang W. S.,
    3. Rapaport D. H.,
    4. Harris W. A.
    (1997) Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385, 67–70
    OpenUrlCrossRefPubMed
    1. Dorsky R. I.,
    2. Rapaport D. H.,
    3. Harris W. A.
    (1995) Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14, 487–496
    OpenUrlCrossRefPubMedWeb of Science
    1. Eisen J. S.,
    2. Myers P. Z.,
    3. Westerfield M.
    (1986) Pathway selection by growth cones of identified motoneurones in live zebrafish embryos. Nature 320, 269–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Eisen J. S.
    (1991) Determination of primary motoneuron identity in developing zebrafish embryos. Science 252, 569–572
    OpenUrlAbstract/FREE Full Text
    1. Ericson J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Rashbass P.,
    3. Schedl A.,
    4. Brenner-Morton S.,
    5. Kawakami A.,
    6. van Heyningen V.,
    7. Jessell T. M.,
    8. Briscoe J.
    (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Fortini M. E.,
    2. Rebay I.,
    3. Caron L. A.,
    4. Artavanis Tsakonas S.
    (1993) An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365, 555–557
    OpenUrlCrossRefPubMedWeb of Science
    1. Goriely A.,
    2. Dumont N.,
    3. Dambly Chaudiere C.,
    4. Ghysen A.
    (1991) The determination of sense organs in Drosophila: effect of the neurogenic mutations in the embryo. Development 113, 1395–1404
    OpenUrlAbstract
    1. Greenwald I.,
    2. Rubin G. M.
    (1992) Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 68, 271–281
    OpenUrlCrossRefPubMedWeb of Science
    1. Grunwald D. J.,
    2. Kimmel C. B.,
    3. Westerfield M.,
    4. Walker C.,
    5. Streisinger G.
    (1988) A neural degeneration mutation that spares primary neurons in the zebrafish. Dev. Biol 126, 115–128
    OpenUrlCrossRefPubMedWeb of Science
    1. Haddon C.,
    2. Smithers L.,
    3. Schneider-Maunoury S.,
    4. Coche T.,
    5. Henrique D.,
    6. Lewis J.
    (1998) Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. Development 125, 359–370
    OpenUrlAbstract
    1. Heitzler P.,
    2. Simpson P.
    (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092
    OpenUrlCrossRefPubMedWeb of Science
    1. Henrique D.,
    2. Adam J.,
    3. Myat A.,
    4. Chitnis A.,
    5. Lewis J.,
    6. Ish Horowicz D.
    (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790
    OpenUrlCrossRefPubMed
    1. Inoue A.,
    2. Takahashi M.,
    3. Hatta K.,
    4. Hotta Y.,
    5. Okamoto H.
    (1994) Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev. Dyn 199, 1–11
    OpenUrlPubMedWeb of Science
    1. Jiang Y. J.,
    2. Brand M.,
    3. Heisenberg C.-P.,
    4. Beuchle D.,
    5. Furutani-Seiki M.,
    6. Kelsh R. N.,
    7. Warga R. M.,
    8. Granato M.,
    9. Haffter P.,
    10. Hammerschmidt M.,
    11. Kane D. A.,
    12. Mullins M. C.,
    13. Odenthal J.,
    14. van Eeden F. J. M.,
    15. Nusslein-Volhard C.
    (1996) Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123, 205–216
    OpenUrlAbstract/FREE Full Text
    1. Kim C. H.,
    2. Ueshima E.,
    3. Muraoka O.,
    4. Tanaka H.,
    5. Yeo S. Y.,
    6. Huh T. L.,
    7. Miki N.
    (1996) Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci. Lett 216, 109–112
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimmel C. B.,
    2. Warga R. M.,
    3. Kane D. A.
    (1994) Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265–276
    OpenUrlAbstract
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullmann B.,
    5. Schilling T. F.
    (1995) Stages of Embryonic Development of the Zebrafish. Dev. Dyn 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Kooh P. J.,
    2. Fehon R. G.,
    3. Muskavitch M. A.
    (1993) Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117, 493–507
    OpenUrlAbstract
    1. Kopan R.,
    2. Nye J. S.,
    3. Weintraub H.
    (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120, 2385–2396
    OpenUrlAbstract/FREE Full Text
    1. Korzh V.,
    2. Edlund T.,
    3. Thor S.
    (1993) Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation. Development 118, 417–425
    OpenUrlAbstract
    1. Krauss S.,
    2. Concordet J. P.,
    3. Ingham P. W.
    (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamborghini J. E.
    (1980) Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation. J. Comp. Neurol 189, 323–333
    OpenUrlCrossRefPubMedWeb of Science
    1. Lardelli M.,
    2. Williams R.,
    3. Mitsiadis T.,
    4. Lendahl U.
    (1996) Expression of the Notch3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mech. Dev 59, 177–190
    OpenUrlCrossRefPubMedWeb of Science
    1. Marusich M. F.,
    2. Furneaux H. M.,
    3. Henion P. D.,
    4. Weston J. A.
    (1994) Hu neuronal proteins are expressed in proliferating neurogenic cells. J. Neurobiol 25, 143–155
    OpenUrlCrossRefPubMedWeb of Science
    1. Muskavitch M. A.
    (1994) Delta-Notch signaling and Drosophila cell fate choice. Dev. Biol 166, 415–430
    OpenUrlCrossRefPubMedWeb of Science
    1. Myers P. Z.
    (1985) Spinal motoneurons of the larval zebrafish. J. Comp. Neurol 236, 555–561
    OpenUrlCrossRefPubMedWeb of Science
    1. Myers P. Z.,
    2. Eisen J. S.,
    3. Westerfield M.
    (1986) Development and axonal outgrowth of identified motoneurons in the zebrafish. J. Neurosci 6, 2278–2289
    OpenUrlAbstract
    1. Nye J. S.,
    2. Kopan R.,
    3. Axel R.
    (1994) An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120, 2421–2430
    OpenUrlAbstract/FREE Full Text
    1. Pfaff S. L.,
    2. Mendelsohn M.,
    3. Stewart C. L.,
    4. Edlund T.,
    5. Jessell T. M.
    (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320
    OpenUrlCrossRefPubMedWeb of Science
    1. Placzek M.,
    2. Tessier Lavigne M.,
    3. Yamada T.,
    4. Jessell T.,
    5. Dodd J.
    (1990) Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250, 985–988
    OpenUrlAbstract/FREE Full Text
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Schier A. F.,
    2. Neuhauss S. C. F.,
    3. Harvey M.,
    4. Malicki J.,
    5. Solnica-Kretzel L.,
    6. Stainier D. Y. R.,
    7. Zwartkruis F.,
    8. Abdelilah S.,
    9. Stemple D. L.,
    10. Rangini Z.,
    11. Yang H.,
    12. Driever W.
    (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178
    OpenUrlAbstract/FREE Full Text
    1. Simpson P.
    (1990) Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109, 509–519
    OpenUrlAbstract
    1. Tanabe Y.,
    2. Jessell T. M.
    (1996) Diversity and pattern in the developing spinal cord. Science 274, 1115–1123
    OpenUrlAbstract/FREE Full Text
    1. Thisse C.,
    2. Thisse B.,
    3. Schilling T. F.,
    4. Postlethwait J. H.
    (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215
    OpenUrlAbstract
    1. Tokumoto M.,
    2. Gong Z.,
    3. Tsubokawa T.,
    4. Hew C. L.,
    5. Uyemura K.,
    6. Hotta Y.,
    7. Okamoto H.
    (1995) Molecular heterogeneity among primary motoneurons and within myotomes revealed by the differential mRNA expression of novel islet-1 homologs in embryonic zebrafish. Dev. Biol 171, 578–589
    OpenUrlCrossRefPubMedWeb of Science
    1. Tomlinson A.,
    2. Ready D. F.
    (1987) Neuronal differentiation in the Drosophila ommatidium. Dev. Biol 120, 366–376
    OpenUrlCrossRefPubMedWeb of Science
    1. Trevarrow B.,
    2. Marks D. L.,
    3. Kimmel C. B.
    (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4, 669–679
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsuchida T.,
    2. Ensini M.,
    3. Morton S. B.,
    4. Baldassare M.,
    5. Edlund T.,
    6. Jessell T. M.,
    7. Pfaff S. L.
    (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970
    OpenUrlCrossRefPubMedWeb of Science
    1. Turner D. L.,
    2. Weintraub H.
    (1994) Expression of achaete-scute homolog3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8, 1434–1447
    OpenUrlAbstract/FREE Full Text
    1. Wigglesworth V. B.
    (1940) Local and general factors in the development of ‘pattern’ in Rhodnius prolixus (Hemiptera). J. Exp. Biol 17, 180–200
    OpenUrlAbstract
    1. Yamada T.,
    2. Placzek M.,
    3. Tanaka H.,
    4. Dodd J.,
    5. Jessell T. M.
    (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamada T.,
    2. Pfaff S. L.,
    3. Edlund T.,
    4. Jessell T. M.
    (1993) Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73, 673–686
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of neuronal specification in the zebrafish spinal cord by Delta function
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Regulation of neuronal specification in the zebrafish spinal cord by Delta function
B. Appel, J.S. Eisen
Development 1998 125: 371-380;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Regulation of neuronal specification in the zebrafish spinal cord by Delta function
B. Appel, J.S. Eisen
Development 1998 125: 371-380;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992