Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain
J. van der Wees, J.G. Schilthuis, C.H. Koster, H. Diesveld-Schipper, G.E. Folkers, P.T. van der Saag, M.I. Dawson, K. Shudo, B. van der Burg, A.J. Durston
Development 1998 125: 545-556;
J. van der Wees
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.G. Schilthuis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.H. Koster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Diesveld-Schipper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.E. Folkers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.T. van der Saag
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.I. Dawson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Shudo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. van der Burg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.J. Durston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Retinoids regulate gene expression via nuclear retinoic acid receptors, the RARs and RXRs. To investigate the functions of retinoid receptors during early neural development, we expressed a dominant negative RARbeta in early Xenopus embryos. We obtained evidence that dominant negative RARbeta specifically inhibits RAR/RXR heterodimer-mediated, but not RXR homodimer-mediated, transactivation. Both all-trans- and 9-cis-RA-induced teratogenesis were, however, efficiently opposed by ectopic expression of dominant negative RARbeta, indicating that only RAR/RXR transactivation is required for retinoid teratogenesis by each of these ligands. Experiments with two RXR-selective ligands confirmed that activation of RXR homodimers does not cause retinoid teratogenesis. Dominant negative RARbeta thus specifically interferes with the retinoid signalling pathway that is responsible for retinoid teratogenesis. Dominant negative RARbeta-expressing embryos had a specific developmental phenotype leading to disorganization of the hindbrain. Mauthner cell multiplications in the posterior hindbrain, and (both anteriorly and posteriorly) expanded Krox-20 expression domains indicated (partial) transformation of a large part of the hindbrain into (at least partial) rhombomere 3, 4 and/or 5 identity. In contrast, the fore- and midbrain and spinal cord appeared to be less affected. These data indicate that RARs play a role in patterning the hindbrain.

REFERENCES

    1. Alexandre D.,
    2. Clarke J. D. W.,
    3. Oxtoby E.,
    4. Yan Y.-L.,
    5. Jowett T.,
    6. Holder N.
    (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122, 735–746
    OpenUrlAbstract
    1. Blitz I. L.,
    2. Cho K. W. Y.
    (1995) Anterior neurectoderm is progressively induced during gastrulation: The role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004
    OpenUrlAbstract
    1. Blumberg B.,
    2. Bolado J.,
    3. Moreno T. A.,
    4. Kintner C.,
    5. Evans R. M.,
    6. Papalopulu N.
    (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373–379
    OpenUrlAbstract
    1. Bouwmeester T.,
    2. Kim S.-H.,
    3. Sasai Y.,
    4. Lu B.,
    5. De Robertis E. M.
    (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601
    OpenUrlCrossRefPubMedWeb of Science
    1. Bradley L. C.,
    2. Snape A.,
    3. Bhatt S.,
    4. Wilkinson D. G.
    (1992) The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest. Mech. Dev 40, 73–84
    OpenUrl
    1. Conlon R. A.,
    2. Rossant J.
    (1992) Exogenous retinoic acid rapidly induces ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–368
    OpenUrlAbstract/FREE Full Text
    1. Creech Kraft J.,
    2. Schuh T.,
    3. Juchau M.,
    4. Kimelman D.
    (1994) The retinoid X receptor ligand, 9- cis -retinoic acid, is a potential regulator of early Xenopus development. Proc. Natl. Acad. Sci. USA 91, 3067–3071
    OpenUrlAbstract/FREE Full Text
    1. Dawson M. I.,
    2. Chao W. R.,
    3. Pine P.,
    4. Jong L.,
    5. Hobbs P. D.,
    6. Rudd C. K.,
    7. Quick T. C.,
    8. Niles R. M.,
    9. Zhang X.-k.,
    10. Lombardo A.,
    11. Ely K. R.,
    12. Shroot B.,
    13. Fontana J. A.
    (1995) Correlation of retinoid binding affinity to retinoic acid receptor alpha with retinoid inhibition of growth of estrogen receptor-positive MCF-7 mammary carcinoma cells. Cancer Research 55, 4446–4451
    OpenUrlAbstract/FREE Full Text
    1. Dawson M. I.,
    2. Jong L.,
    3. Hobbs P. D.,
    4. Cameron J. F.,
    5. Chao W. R.,
    6. Pfahl M.,
    7. Lee M. O.,
    8. Shroot B.,
    9. Pfahl M.
    (1995) Conformational effects on retinoid receptor selectivity 2. Effects of retinoid bridging group on retinoid X receptor activity and selectivity. J. Med. Chem 38, 3368–3383
    OpenUrlCrossRefPubMedWeb of Science
    1. Doniach T.
    (1995) Basic FGF as an inducer of anteroposterior neural pattern. Cell 83, 1067–1070
    OpenUrlCrossRefPubMedWeb of Science
    1. Dupe V.,
    2. Davenne M.,
    3. Brocard J.,
    4. Dolle P.,
    5. Mark M.,
    6. Dierich A.,
    7. Chambon P.,
    8. Rijli F. M.
    (1997) In vivo functional analysis of the Hoxa-1 3retinoic acid response element (3 RARE). Development 124, 399–410
    OpenUrlAbstract
    1. Durand B.,
    2. Saunders M.,
    3. Gaudon C.,
    4. Roy B.,
    5. Losson R.,
    6. Chambon P.
    (1994) Activation function 2 (AF-2) of retinoic acid receptor and 9- cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBOJ 13, 5370–5382
    OpenUrlPubMedWeb of Science
    1. Durston A. J.,
    2. Timmermans J. P. M.,
    3. Hage W. J.,
    4. Hendriks H. F. J.,
    5. de Vries N. J.,
    6. Heideveld M.,
    7. Nieuwkoop P. D.
    (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144
    OpenUrlCrossRefPubMed
    1. Eizema K.,
    2. Koster J. G.,
    3. Stegeman B. I.,
    4. Baarends W. M.,
    5. Lanser P. H.,
    6. Destree O. H. J.
    (1994) Comparative analysis of Engrailed −1 and Wnt −1 expression in the developing central nervous system of Xenopus laevis. Int. J. Dev. Biol 38, 623–632
    OpenUrlPubMed
    1. Folkers G. E.,
    2. van der Saag P. T.
    (1995) Adenovirus E1A functions as a cofactor for retinoic acid receptor(RAR) through direct interaction with RAR. Mol. Cell. Biol 15, 5868–5878
    OpenUrlAbstract/FREE Full Text
    1. Frasch M.,
    2. Chen X. W.,
    3. Lufkin T.
    (1995) Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121, 957–974
    OpenUrlAbstract
    1. Gale E.,
    2. Prince V.,
    3. Lumsden A.,
    4. Clarke J.,
    5. Holder N.,
    6. Maden M.
    (1996) Late effects of retinoic acid on neural crest and aspects of rhombomere identity. Development 122, 783–793
    OpenUrlAbstract
    1. Gao X. M.,
    2. Stegeman B. I.,
    3. Lanser P.,
    4. Koster J. G.,
    5. Destree O. H. J.
    (1994) GR transcripts are localized during early Xenopus laevis embryogenesis and overexpression of GR inhibits differentiation after dexamethasone treatment. Biochem. Biophys. Res. Comm 199, 734–741
    OpenUrlCrossRefPubMed
    1. Godsave S. F.,
    2. Dekker E. J.,
    3. Holling T.,
    4. Pannese M.,
    5. Boncinelli E.,
    6. Durston A.
    (1994) Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev. Biol 166, 465–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Hansen C. S.,
    2. Marion C. D.,
    3. Steele K.,
    4. George S.,
    5. Smith W. C.
    (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124, 483–492
    OpenUrlAbstract
    1. Hemmati-Brivanlou A.,
    2. de la Torre J. R.,
    3. Holt C.,
    4. Harland R. M.
    (1991) Cephalic expression and molecular characterization of Xenopus En-2. Development 111, 715–724
    OpenUrlAbstract
    1. Hemmati-Brivanlou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann Organizer and displays direct neuralizing activity. Cell 77, 283–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Heyman R. A.,
    2. Mangelsdorf D. J.,
    3. Dyck J. A.,
    4. Stein R. B.,
    5. Eichele G.,
    6. Evans R. M.,
    7. Thaller C.
    (1992) 9- cis -Retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68, 397–406
    OpenUrlCrossRefPubMedWeb of Science
    1. Hill J.,
    2. Clarke J. D. W.,
    3. Vargesson N.,
    4. Jowett T.,
    5. Holder N.
    (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech. Dev 50, 3–16
    OpenUrlCrossRefPubMedWeb of Science
    1. Holder N.,
    2. Hill J.
    (1991) Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113, 1159–1170
    OpenUrlAbstract
    1. Horn V.,
    2. Minucci S.,
    3. Ogryzko V. V.,
    4. Adamson E. D.,
    5. Howard B. H.,
    6. Levin A. A.,
    7. Ozato K.
    (1996) RAR and RXR selective ligands cooperatively induce apoptosis and neuronal differentiation in P19 embryonal carcinoma cells. FASEB J 10, 1071–1077
    OpenUrlAbstract
    1. Jetten A. M.,
    2. Anderson K.,
    3. Deas M. A.,
    4. Kagechika H.,
    5. Lotan R.,
    6. Rearick J. I.,
    7. Shudo K.
    (1987) New benzoic acid derivatives with retinoid activity: lack of direct correlation between biological activity and binding to cellular retinoic acid binding protein. Cancer Res 47, 3523–3527
    OpenUrlAbstract/FREE Full Text
    1. Jiang H.,
    2. Penner J. D.,
    3. Beard R. L.,
    4. Chandraratna R. A. S.,
    5. Kochhar D. M.
    (1995) Diminished teratogenicity of retinoid X receptor-selective synthetic retinoids. Bioch. Pharmacol 50, 669–676
    OpenUrlCrossRefPubMedWeb of Science
    1. Jones E. A.,
    2. Woodland H. R.
    (1989) Spatial aspects of neural induction in Xenopus laevis. Development 107, 785–791
    OpenUrlAbstract/FREE Full Text
    1. Kastner P.,
    2. Mark M.,
    3. Chambon P.
    (1995) Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life?. Cell 83, 859–869
    OpenUrlCrossRefPubMedWeb of Science
    1. Kessel M.
    (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10, 379–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Kliewer S. A.,
    2. Umesono K.,
    3. Mangelsdorf D. J.,
    4. Evans R. M.
    (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3signalling. Nature 355, 446–449
    OpenUrlCrossRefPubMed
    1. Kolm P. J.,
    2. Sive H. L.
    (1995) Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: Activation by retinoids and peptide growth factors. Dev. Biol 167, 34–49
    OpenUrlCrossRefPubMedWeb of Science
    1. Krieg P. A.,
    2. Melton D. A.
    (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl. Acids Res 12, 7057–7070
    OpenUrlAbstract/FREE Full Text
    1. Kruyt F. A. E.,
    2. van der Veer L. J.,
    3. Mader S.,
    4. van den Brink C. E.,
    5. Feijen A.,
    6. Jonk L. J. C.,
    7. Kruijer W.,
    8. van der Saag P. T.
    (1992) Retinoic acid resistance of the variant embryonal carcinoma cell line RAC65 is caused by expression of a truncated RAR. Differentiation 49, 27–37
    OpenUrlPubMed
    1. Lamb T. M.,
    2. Knecht A. K.,
    3. Smith W. C.,
    4. Stachel S. E.,
    5. Economides A. N.,
    6. Stahl N.,
    7. Yancopolous G. D.,
    8. Harland R. M.
    (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713–718
    OpenUrlAbstract/FREE Full Text
    1. Langston A. W.,
    2. Gudas L. J.
    (1992). Identification of a retinoic acid responsive enhancer 3of the murine homeobox gene Hox-1.6. Mech. Dev 38, 217–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Langston A. W.,
    2. Thompson J. R.,
    3. Gudas L. J.
    (1997) Retinoic acid-responsive enhancers located 3of the Hox a and Hox b homeobox gene clusters—functional analysis. J. Biol. Chem 272, 2167–2175
    OpenUrlCrossRefPubMedWeb of Science
    1. Leid M.,
    2. Kastner P.,
    3. Lyons R.,
    4. Nakshatri H.,
    5. Saunders M.,
    6. Zacharewsky T.,
    7. Chen J.-Y.,
    8. Staub A.,
    9. Garnier J.-M.,
    10. Mader S.,
    11. Chambon P.
    (1992) Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68, 377–395
    OpenUrlCrossRefPubMedWeb of Science
    1. Levin A. A.,
    2. Sturzenbecker L. J.,
    3. Kazmer S.,
    4. Bosakowski T.,
    5. Huselton C.,
    6. Allenby G.,
    7. Speck J.,
    8. Kratzeisen C.,
    9. Rosenberger M.,
    10. Lovey A.,
    11. Grippo J. F.
    (1992) 9- cis -Retinoic acid stereoisomer binds and activates the nuclear receptor RXR. Nature 355, 359–361
    OpenUrlCrossRefPubMed
    1. Lohnes D.,
    2. Mark M.,
    3. Mendelsohn C.,
    4. Dolle P.,
    5. Dierich A.,
    6. Gorry P.,
    7. Gansmuller A.,
    8. Chambon P.
    (1994) Function of the retinoic acid receptors (RARs) during development (I) Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–2748
    OpenUrlAbstract
    1. Lohnes D.,
    2. Mark M.,
    3. Mendelsohn C.,
    4. Dolle P.,
    5. Decimo D.,
    6. LeMeur M.,
    7. Dierich A.,
    8. Gorry P.,
    9. Chambon P.
    (1995) Developmental roles of the retinoic acid receptors. J. Steroid Biochem. Molec. Biol 53, 475–486
    OpenUrlCrossRefPubMedWeb of Science
    1. Lu H. C.,
    2. Eichele G.,
    3. Thaller C.
    (1997) Ligand-bound RXR can mediate retinoid signal transduction during embryogenesis. Development 124, 195–203
    OpenUrlAbstract
    1. Maconochie M.,
    2. Nonchev S.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Paralogous Hox genes: Function and regulation. Annu. Rev. Genet 30, 529–556
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Gale E.,
    3. Kostetskii I.,
    4. Zile M.
    (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol 6, 417–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Mangelsdorf D. J.,
    2. Ong E. S.,
    3. Dyck J. A.,
    4. Evans R. M.
    (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345, 224–229
    OpenUrlCrossRefPubMed
    1. Marshall H.,
    2. Studer M.,
    3. Pöpperl H.,
    4. Aparicio S.,
    5. Kuroiwa A.,
    6. Brenner S.,
    7. Krumlauf R.
    (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571
    OpenUrlCrossRefPubMed
    1. Marshall H.,
    2. Morrison A.,
    3. Studer M.,
    4. Pöpperl H.,
    5. Krumlauf R.
    (1996) Retinoids and Hox genes. FASEB J 10, 969–978
    OpenUrlAbstract
    1. McGrew L. L.,
    2. Lai C. J.,
    3. Moon R. T.
    (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev. Biol 172, 337–342
    OpenUrlCrossRefPubMedWeb of Science
    1. Minucci S.,
    2. Saint-Jeannet J.-P.,
    3. Toyama R.,
    4. Scita G.,
    5. DeLuca L. M.,
    6. Taira M.,
    7. Levin A. A.,
    8. Ozato K.,
    9. Dawid I. B.
    (1996) Retinoid X receptor-selective ligands produce malformations in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 1803–1807
    OpenUrlAbstract/FREE Full Text
    1. Minucci S.,
    2. Leid M.,
    3. Toyama R.,
    4. Saintjeannet J. P.,
    5. Peterson V. J.,
    6. Horn V.,
    7. Ishmael J. E.,
    8. Bhattacharyya N.,
    9. Dey A.,
    10. Dawid I. B.,
    11. Ozato K.
    (1997) Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol. Cell. Biol 17, 644–655
    OpenUrlAbstract/FREE Full Text
    1. Moroni M. C.,
    2. Vigano M. A.,
    3. Mavilio F.
    (1993) Regulation of the human HOXD4 gene by retinoids. Mech. Dev 44, 139–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Morrison A.,
    2. Moroni M. C.,
    3. Arizamcnaughton L.,
    4. Krumlauf R.,
    5. Mavilio F.
    (1996) In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development 122, 1895–1907
    OpenUrlAbstract
    1. Morriss-Kay G. M.,
    2. Murphy P.,
    3. Hill R. E.,
    4. Davidson D. R.
    (1991). Effects of retinoic acid on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 10, 2985–2995
    OpenUrlPubMedWeb of Science
    1. Newport J.,
    2. Kirschner M.
    (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686
    OpenUrlCrossRefPubMedWeb of Science
    1. Nieuwkoop P. D.,
    2. Albers B.
    (1990) The role of competence in the cranial-caudal segregation of the central nervous system. Dev. Growth Diff 32, 23–31
    OpenUrlCrossRef
    1. Ogura T.,
    2. Evans R. M.
    (1995) Evidence for two distinct retinoic acid response pathways for HOXB1 gene regulation. Proc. Natl. Acad. Sci. USA 92, 392–396
    OpenUrlAbstract/FREE Full Text
    1. Ogura T.,
    2. Evans R. M.
    (1995) A retinoic acid-triggered cascade of HOXB1 gene activation. Proc. Natl. Acad. Sci. USA 92, 387–391
    OpenUrlAbstract/FREE Full Text
    1. Pannese M.,
    2. Polo C.,
    3. Andreazzoli M.,
    4. Vignali R.,
    5. Kablar B.,
    6. Barsacchi G.,
    7. Boncinelli E.
    (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707–720
    OpenUrlAbstract
    1. Papalopulu N.,
    2. Kintner C.
    (1996) A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, 3409–3418
    OpenUrlAbstract
    1. Papalopulu N.,
    2. Clarke J. D. W.,
    3. Bradley L.,
    4. Wilkinson D.,
    5. Krumlauf R.,
    6. Holder N.
    (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113, 1145–1158
    OpenUrlAbstract
    1. Petkovich M.,
    2. Brand N. J.,
    3. Krust A.,
    4. Chambon P.
    (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444–450
    OpenUrlCrossRefPubMed
    1. Pöpperl H.,
    2. Featherstone M. S.
    (1993). Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene. Mol. Cell. Biol 13, 257–265
    OpenUrlAbstract/FREE Full Text
    1. Pownall M. E.,
    2. Tucker A. S.,
    3. Slack J. M. W.,
    4. Isaacs H. V.
    (1996) eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122, 3881–3892
    OpenUrlAbstract
    1. Roy D. Y.,
    2. Taneja R.,
    3. Chambon P.
    (1995) Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor(RAR)-, RAR-, or RAR -selective ligand in combination with a retinoid X receptor-specific ligand. Mol. Cell. Biol 15, 6481–6487
    OpenUrlAbstract/FREE Full Text
    1. Ruberte E.,
    2. Dolle P.,
    3. Chambon P.,
    4. Morriss-Kay G.
    (1991) Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111, 45–60
    OpenUrlAbstract
    1. Ruiz i Altaba A.
    (1992) Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 115, 67–80
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T.
    (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5, 175–187
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus laevis embryos. Development 112, 945–958
    OpenUrlAbstract
    1. Sadowski I.,
    2. Ptashne M.
    (1989) A vector for expressing Gal4(1–147) fusions in mammalian cells. Nucl. Acids Res 17, 7539–.
    OpenUrlFREE Full Text
    1. Sasai Y.,
    2. Lu B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336
    OpenUrlCrossRefPubMed
    1. Schuh T. J.,
    2. Hall B. L.,
    3. Creech Kraft J.,
    4. Privalsky M. L.,
    5. Kimelman D.
    (1993) v-erbA and citral reduce the teratogenic effects of all- trans retinoic acid and retinol, respectively, in Xenopus embryogenesis. Development 119, 785–798
    OpenUrlAbstract/FREE Full Text
    1. Sharpe C. R.
    (1992) Two isoforms of retinoic acid receptorexpressed during Xenopus development respond to retinoic acid. Mech. Dev 39, 81–93
    OpenUrlCrossRefPubMed
    1. Sharpe C. R.,
    2. Goldstone K.
    (1997) Retinoid receptors promote primary neurogenesis in Xenopus. Development 124, 515–523
    OpenUrlAbstract
    1. Shen S. B.,
    2. van der Saag P. T.,
    3. Kruijer W.
    (1993) Dominant negative retinoic acid receptor. Mech. Dev 40, 177–189
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Avantaggiato V.,
    3. Moroni M. C.,
    4. Mavilio F.,
    5. Arra C.,
    6. Cotelli F.,
    7. Nigro V.,
    8. Acampora D.
    (1995) Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech. Dev 51, 83–98
    OpenUrlCrossRefPubMedWeb of Science
    1. Sive H. L.,
    2. Draper B. W.,
    3. Harland R. M.,
    4. Weintraub H.
    (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4, 932–942
    OpenUrlAbstract/FREE Full Text
    1. Studer M.,
    2. Pöpperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Sundin O.,
    2. Eichele G.
    (1992) An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114, 841–852
    OpenUrlAbstract
    1. Umemiya H.,
    2. Kawachi E.,
    3. Kagechika H.,
    4. Fukasawa H.,
    5. Hashimoto Y.,
    6. Shudo K.
    (1995) Synergists for retinoid in cellular differentiation of human promyelocytic leukemia cells HL-60. Chem. Pharm. Bull 43, 1827–1829
    OpenUrlPubMed
    1. Umemiya H.,
    2. Kagechika H.,
    3. Fukasawa H.,
    4. Kawachi E.,
    5. Ebisawa M.,
    6. Hashimoto Y.,
    7. Eisenmann G.,
    8. Erb C.,
    9. Pornon A.,
    10. Chambon P.,
    11. Gronemeyer H.,
    12. Shudo K.
    (1997) Action mechanism of retinoid-synergistic dibenzodiazepines. Biochem. Biophys. Res. Comm 233, 121–125
    OpenUrlCrossRefPubMed
    1. van der Wees J.,
    2. Matharu P. J.,
    3. de Roos K.,
    4. Destree O. H. J.,
    5. Godsave S. F.,
    6. Durston A. J.,
    7. Sweeney G. E.
    (1996) Developmental expression and differential regulation by retinoic acid of Xenopus COUP-TF-A and COUP-TF-B. Mech. Dev 54, 173–184
    OpenUrlCrossRefPubMedWeb of Science
    1. Vargas-Lizardi P.,
    2. Lyser K. M.
    (1974) Time of origin of Mauthner's neuron in Xenopus laevis embryos. Dev. Biol 38, 220–228
    OpenUrlCrossRefPubMed
    1. Wood H.,
    2. Pall G.,
    3. Morriss-Kay G.
    (1994) Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3 HoxB gene expression domains. Development 120, 2279–2285
    OpenUrlAbstract
    1. Zhang X.-K.,
    2. Hoffmann B.,
    3. Tran P. B.-V.,
    4. Graupner G.,
    5. Pfahl M.
    (1992) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355, 441–446
    OpenUrlCrossRefPubMed
    1. Zhang X.-K.,
    2. Lehmann J.,
    3. Hoffmann B.,
    4. Dawson M. I.,
    5. Cameron J.,
    6. Graupner G.,
    7. Hermann T.,
    8. Tran P.,
    9. Pfahl M.
    (1992) Homodimer formation of retinoid X receptor induced by 9- cis retinoic acid. Nature 358, 587–591
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain
J. van der Wees, J.G. Schilthuis, C.H. Koster, H. Diesveld-Schipper, G.E. Folkers, P.T. van der Saag, M.I. Dawson, K. Shudo, B. van der Burg, A.J. Durston
Development 1998 125: 545-556;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain
J. van der Wees, J.G. Schilthuis, C.H. Koster, H. Diesveld-Schipper, G.E. Folkers, P.T. van der Saag, M.I. Dawson, K. Shudo, B. van der Burg, A.J. Durston
Development 1998 125: 545-556;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992