Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity
L. Lo, M.C. Tiveron, D.J. Anderson
Development 1998 125: 609-620;
L. Lo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.C. Tiveron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.J. Anderson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We have investigated the genetic circuitry underlying the determination of neuronal identity, using mammalian peripheral autonomic neurons as a model system. Previously, we showed that treatment of neural crest stem cells (NCSCs) with bone morphogenetic protein-2 (BMP-2) leads to an induction of MASH1 expression and consequent autonomic neuronal differentiation. We now show that BMP2 also induces expression of the paired homeodomain transcription factor Phox2a, and the GDNF/NTN signalling receptor tyrosine kinase c-RET. Constitutive expression of MASH1 in NCSCs from a retroviral vector, in the absence of exogenous BMP2, induces expression of both Phox2a and c-RET in a large fraction of infected colonies, and also promotes morphological neuronal differentiation and expression of pan-neuronal markers. In vivo, expression of Phox2a in autonomic ganglia is strongly reduced in Mash1 −/− embryos. These loss- and gain-of-function data suggest that MASH1 positively regulates expression of Phox2a, either directly or indirectly. Constitutive expression of Phox2a, by contrast to MASH1, fails to induce expression of neuronal markers or a neuronal morphology, but does induce expression of c-RET. These data suggest that MASH1 couples expression of pan-neuronal and subtype-specific components of autonomic neuronal identity, and support the general idea that identity is established by combining subprograms involving cascades of transcription factors, which specify distinct components of neuronal phenotype.

REFERENCES

    1. Anderson D. J.
    (1995) Spinning skin into neurons. Curr. Biol 5, 1235–1238
    OpenUrlCrossRefPubMed
    1. Benezra R.,
    2. Davis R. L.,
    3. Lockshon D.,
    4. Turner D. L.,
    5. Weintraub H.
    (1990) The protein Id, a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Birren S. J.,
    2. Lo L. C.,
    3. Anderson D. J.
    (1993) Sympathetic neurons undergo a developmental switch in trophic dependence. Development 119, 597–610
    OpenUrlAbstract/FREE Full Text
    1. Blaugrund E.,
    2. Pham T. D.,
    3. Tennyson V. M.,
    4. Lo L.,
    5. Sommer L.,
    6. Anderson D. J.,
    7. Gershon M. D.
    (1996) Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1 -dependence. Development 122, 309–320
    OpenUrlAbstract
    1. Cau E.,
    2. Gradwohl G.,
    3. Fode C.,
    4. Guillemot F.
    (1997) MASH1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621
    OpenUrlAbstract
    1. Davis R. L.,
    2. Weintraub H.,
    3. Lassar A. B.
    (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000
    OpenUrlCrossRefPubMedWeb of Science
    1. Duggan A.,
    2. Chalfie M.
    (1995) Control of neuronal development in Caenorhabditis elegans. Curr. Opin. Neurobiol 5, 6–9
    OpenUrlCrossRefPubMed
    1. Duncan M.,
    2. DiCicco-Bloom E. M.,
    3. Xiang X.,
    4. Benezra R.,
    5. Chada K.
    (1992) The gene for the helix-loop-helix protein, Id, is specifically expressed in neural precursors. Dev. Biol 154, 1–10
    OpenUrlCrossRefPubMedWeb of Science
    1. Durbec P. L.,
    2. Larsson-Blomberg L. B.,
    3. Schuchardt A.,
    4. Costantini F.,
    5. Pachnis V.
    (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122, 349–358
    OpenUrlAbstract
    1. Ernsberger U.,
    2. Patzke H.,
    3. Tissier-Seta J. P.,
    4. Reh T.,
    5. Goridis C.,
    6. Rohrer H.
    (1995) The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech. Dev 52, 125–136
    OpenUrlCrossRefPubMedWeb of Science
    1. Groves A. K.,
    2. George K. M.,
    3. Tissier-Seta J.-P.,
    4. Engel J. D.,
    5. Brunet J.-F.,
    6. Anderson D. J.
    (1995) Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121, 887–901
    OpenUrlAbstract
    1. Guillemot F.
    (1995) Analysis of the role of basic-helix-loop-helix transcription factors in the development of neural lineages in the mouse. Biol. Cell 84, 3–6
    OpenUrlCrossRefPubMedWeb of Science
    1. Guillemot F.,
    2. Joyner A. L.
    (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev 42, 171–185
    OpenUrlCrossRefPubMedWeb of Science
    1. Guillemot F.,
    2. Lo L.-C.,
    3. Johnson J. E.,
    4. Auerbach A.,
    5. Anderson D. J.,
    6. Joyner A. L.
    (1993) Mammalian achaete-scute homolog-1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476
    OpenUrlCrossRefPubMedWeb of Science
    1. He X.,
    2. Rosenfeld M. G.
    (1991) Mechanisms of complex transcriptional regulation, implications for brain development. Neuron 7, 183–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Hirsch M.-R.,
    2. Tiveron M.-C.,
    3. Guillemot F.,
    4. Brunet J.-F.,
    5. Goridis C.
    (1998) Control of noradrenergic differentiation and Phox2a expression by MASM1 in the central and peripheral nervous system. Development 125, 599–608
    OpenUrlAbstract
    1. Jan Y. N.,
    2. Jan L. Y.
    (1993) HLH proteins, fly neurogenesis and vertebrate myogenesis. Cell 75, 827–830
    OpenUrlCrossRefPubMedWeb of Science
    1. Jarman A. P.,
    2. Grau Y.,
    3. Jan L. Y.,
    4. Jan Y.-N.
    (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321
    OpenUrlCrossRefPubMedWeb of Science
    1. Jasoni C. L.,
    2. Walker M. B.,
    3. Morris M. D.,
    4. Reh T. A.
    (1994) A chicken achaete-scute homolog (CASH-1) is expressed in a temporally and spatially discrete manner in the developing central nervous system. Development 120, 769–783
    OpenUrlAbstract
    1. Johnson J. E.,
    2. Birren S. J.,
    3. Anderson D. J.
    (1990) Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 346, 858–861
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson J. E.,
    2. Birren S. J.,
    3. Saito T.,
    4. Anderson D. J.
    (1992) DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer. Proc. Nat. Acad. Sci. USA 89, 3596–3600
    OpenUrlAbstract/FREE Full Text
    1. Johnson J. E.,
    2. Zimmerman K.,
    3. Saito T.,
    4. Anderson D. J.
    (1992) Induction and repression of mammalian achaete-scute homolog (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells. Development 114, 75–87
    OpenUrlAbstract
    1. Kotzbauer P. T.,
    2. Lampe P. A.,
    3. Heuckeroth R. O.,
    4. Golden J. P.,
    5. Creedon D. J.,
    6. Johnson E. M.,
    7. Milbrandt J.
    (1996) Neurturin, a relative of glial cell line-derived neurotrophic factor. Nature 384, 467–470
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassar A. B.,
    2. Davis R. L.,
    3. Wright W. E.,
    4. Kadesch T.,
    5. Murre C.,
    6. Voronova A.,
    7. Baltimore D.,
    8. Weintraub H.
    (1991) Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66, 305–315
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J. F.
    (1997) Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol 7, 13–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Lindsay R. M.,
    2. Yancopoulos G. D.
    (1996) GDNF in a bind with known orphan, accessory implicated in new twist. Neuron 17, 571–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Lo L.,
    2. Johnson J. E.,
    3. Wuenschell C. W.,
    4. Saito T.,
    5. Anderson D. J.
    (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5, 1524–1537
    OpenUrlAbstract/FREE Full Text
    1. Lo L.,
    2. Sommer L.,
    3. Anderson D. J.
    (1997) MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells. Curr. Biol 7, 440–450
    OpenUrlCrossRefPubMedWeb of Science
    1. Lo L.-C.,
    2. Anderson D. J.
    (1995) Postmigratory neural crest cells expressing c-ret display restricted developmental and proliferative capacities. Neuron 15, 527–539
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Ma Q.,
    2. Kintner C.,
    3. Anderson D. J.
    (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma Q.,
    2. Sommer L.,
    3. Cserjesi P.,
    4. Anderson D. J.
    (1997) Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing Notch ligands. J. Neurosci 17, 3644–3652
    OpenUrlAbstract/FREE Full Text
    1. Mansouri A.,
    2. Hallonet M.,
    3. Gruss P.
    (1996) Pax genes and their roles in cell differentiation and development. Curr. Opin. Cell Biol 8, 851–857
    OpenUrlCrossRefPubMedWeb of Science
    1. Maxwell G. D.,
    2. Reid K.,
    3. Elefanty A.,
    4. Bartlett P. F.,
    5. Murphy M.
    (1996) Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures. Proc. Nat. Acad. Sci. USA 93, 13274–13279
    OpenUrlAbstract/FREE Full Text
    1. Morgenstern J. P.,
    2. Land H.
    (1990) Advanced mammalian gene transfer-high titer retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nuc. Acids. Res 18, 3587–3595
    OpenUrlAbstract/FREE Full Text
    1. Morin X.,
    2. Cremer H.,
    3. Hirsch M.-R.,
    4. Kapur R. P.,
    5. Goridis C.,
    6. Brunet J.-F.
    (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423
    OpenUrlCrossRefPubMedWeb of Science
    1. Murre C.,
    2. McCaw P. S.,
    3. Baltimore D.
    (1989) A new DNA binding and dimerization motif in immunoglobin enhancer binding, daughterless, MyoD and myc proteins. Cell 56, 777–783
    OpenUrlCrossRefPubMedWeb of Science
    1. Murre C.,
    2. McCaw P. S.,
    3. Vaessin H.,
    4. Caudy M.,
    5. Jan L. Y.,
    6. Jan Y. N.,
    7. Cabrera C. V.,
    8. Buskin J. N.,
    9. Hauschka S. D.,
    10. Lassar A. B.,
    11. Weintraub H.,
    12. Baltimore D.
    (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544
    OpenUrlCrossRefPubMedWeb of Science
    1. Olson E. N.,
    2. Klein W. H.
    (1994) bHLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out. Genes Dev 8, 1–8
    OpenUrlFREE Full Text
    1. Pachnis V.,
    2. Mankoo B.,
    3. Costantini F.
    (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005–1017
    OpenUrlAbstract
    1. Pattyn A.,
    2. Morin X.,
    3. Cremer H.,
    4. Goridis C.,
    5. Brunet J.-F.
    (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075
    OpenUrlAbstract
    1. Pear W. S.,
    2. Nolan G. P.,
    3. Scott M. L.,
    4. Baltimore D.
    (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Nat. Acad. Sci. USA 90, 8392–8396
    OpenUrlAbstract/FREE Full Text
    1. Reissman E.,
    2. Ernsberger U.,
    3. Francis-West P. H.,
    4. Rueger D.,
    5. Brickell P. D.,
    6. Rohrer H.
    (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079–2088
    OpenUrlAbstract
    1. Robertson K.,
    2. Mason I.
    (1997) The GDNF-RET signalling partnership. Trends Genet 13, 1–3
    OpenUrlCrossRefPubMedWeb of Science
    1. Ryan A. K.,
    2. Rosenfeld M. G.
    (1997) POU domain family values, flexibility, partnerships and developmental codes. Genes Dev 11, 1207–1225
    OpenUrlFREE Full Text
    1. Saito T.,
    2. Lo L.,
    3. Anderson D. J.,
    4. Mikoshiba K.
    (1996) Identification of a novel paired homeodomain protein related to C. elegans UNC-4 as a potential downstream target of MASH1. Dev. Biol 180, 143–155
    OpenUrlCrossRefPubMedWeb of Science
    1. Schuchardt A.,
    2. D'Agati V.,
    3. Larsson-Blomberg L.,
    4. Costantini F.,
    5. Pachnis V.
    (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383
    OpenUrlCrossRefPubMedWeb of Science
    1. Shah N. M.,
    2. Groves A.,
    3. Anderson D. J.
    (1996) Alternative neural crest cell fates are instructively promoted by TGFsuperfamily members. Cell 85, 331–343
    OpenUrlCrossRefPubMedWeb of Science
    1. Shah N. M.,
    2. Marchionni M. A.,
    3. Isaacs I.,
    4. Stroobant P. W.,
    5. Anderson D. J.
    (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Sommer L.,
    2. Shah N.,
    3. Rao M.,
    4. Anderson D. J.
    (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15, 1245–1258
    OpenUrlCrossRefPubMedWeb of Science
    1. Stemple D. L.,
    2. Anderson D. J.
    (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985
    OpenUrlCrossRefPubMedWeb of Science
    1. Stern C. D.,
    2. Artinger K. B.,
    3. Bronner-Fraser M.
    (1991) Tissue interactions affecting the migration and differentiation of neural crest cells in the chick embryo. Development 113, 207–216
    OpenUrlAbstract
    1. Struhl K.
    (1991) Mechanisms for diversity in gene expression patterns. Neuron 7, 177–181
    OpenUrlCrossRefPubMedWeb of Science
    1. Tamura T.,
    2. Konishi Y.,
    3. Makino Y.,
    4. Mikoshiba K.
    (1996) Mechanisms of transcriptional regulation and neural gene expression. Neurochem. Int 29, 573–581
    OpenUrlCrossRefPubMed
    1. Tanabe Y.,
    2. Jessell T. M.
    (1996) Diversity and pattern in the developing spinal cord. Science 274, 1115–1123
    OpenUrlAbstract/FREE Full Text
    1. Tiveron M.-C.,
    2. Hirsch M.-R.,
    3. Brunet J.-F.
    (1996) The expression pattern of the transcription factor Phox2a delineates synaptic pathways of the autonomic nervous system. J. Neurosci 16, 7649–7660
    OpenUrlAbstract/FREE Full Text
    1. Tsuchida T.,
    2. Ensini M.,
    3. Morton S. B.,
    4. Baldassare M.,
    5. Edlund T.,
    6. Jessell T. M.,
    7. Pfaff S. L.
    (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970
    OpenUrlCrossRefPubMedWeb of Science
    1. Valarche I.,
    2. Tissier-Seta J.-P.,
    3. Hirsch M.-R.,
    4. Martinez S.,
    5. Goridis C.,
    6. Brunet J.-F.
    (1993) The mouse homeodomain protein Phox2 regulates NCAM promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119, 881–896
    OpenUrlAbstract/FREE Full Text
    1. Varley J. E.,
    2. Maxwell G. D.
    (1996) BMP-2 and BMP-4, but not BMP-6, increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp. Neurol 140, 84–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Varley J. E.,
    2. Wehby R. G.,
    3. Rueger D. C.,
    4. Maxwell G. D.
    (1995) Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant osteogenic protein-1. Dev. Dynam 203, 434–447
    OpenUrlPubMedWeb of Science
    1. Vervoort M.,
    2. Zink D.,
    3. Pujol N.,
    4. Victoir K.,
    5. Dumont N.,
    6. Ghysen A.,
    7. Dambly-Chaudiere C.
    (1995) Genetic determinants of sense organ identity in Drosophila, regulatory interactions between cut and poxn. Development 121, 3111–3120
    OpenUrlAbstract
    1. Wakamatsu Y.,
    2. Watanabe Y.,
    3. Nakamura H.,
    4. Kondoh H.
    (1997) Regulation of the neural crest cell fate by N-myc, promotion of ventral migration and neuronal differentiation. Development 124, 1953–1962
    OpenUrlAbstract
    1. Zellmer E.,
    2. Zhang Z.,
    3. Greco D.,
    4. Rhodes J.,
    5. Cassel S.,
    6. Lewis E. J.
    (1995) A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J. Neurosci 15, 8109–8120
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity
L. Lo, M.C. Tiveron, D.J. Anderson
Development 1998 125: 609-620;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity
L. Lo, M.C. Tiveron, D.J. Anderson
Development 1998 125: 609-620;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992