Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction
X. Xu, M. Weinstein, C. Li, M. Naski, R.I. Cohen, D.M. Ornitz, P. Leder, C. Deng
Development 1998 125: 753-765;
X. Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Weinstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Naski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.I. Cohen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.M. Ornitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Leder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Deng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

FGFR2 is a membrane-spanning tyrosine kinase that serves as a high affinity receptor for several members of the fibroblast growth factor (FGF) family. To explore functions of FGF/FGFR2 signals in development, we have mutated FGFR2 by deleting the entire immunoglobin-like domain III of the receptor. We showed that murine FGFR2 is essential for chorioallantoic fusion and placenta trophoblast cell proliferation. Fgfr2(DeltaIgIII/DeltaIgIII) embryos displayed two distinct defects that resulted in failures in formation of a functional placenta. About one third of the mutants failed to form the chorioallantoic fusion junction and the remaining mutants did not have the labyrinthine portion of the placenta. Consequently, all mutants died at 10–11 days of gestation. Interestingly, Fgfr2(DeltaIgIII/DeltaIgIII) embryos do not form limb buds. Consistent with this defect, the expression of Fgf8, an apical ectodermal factor, is absent in the mutant presumptive limb ectoderm, and the expression of Fgf10, a mesenchymally expressed limb bud initiator, is down regulated in the underlying mesoderm. These findings provide direct genetic evidence that FGF/FGFR2 signals are absolutely required for vertebrate limb induction and that an FGFR2 signal is essential for the reciprocal regulation loop between FGF8 and FGF10 during limb induction.

REFERENCES

    1. Amaya E.,
    2. Musci T. J.,
    3. Kirschner M. W.
    (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Basilico C.,
    2. Moscatelli D.
    (1992) The FGF family of growth factors and oncogenes. Adv. Cancer Re.s 59, 115–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Beiman M.,
    2. Shilo B. Z.,
    3. Volk T.
    (1996) Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev 10, 2993–3002
    OpenUrlAbstract/FREE Full Text
    1. Candia A. F.,
    2. Hu J.,
    3. Crosby J.,
    4. Lalley P. A.,
    5. Noden D.,
    6. Nadeau J. H.,
    7. Wright C. V.
    (1992) Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116, 1123–1136
    OpenUrlAbstract/FREE Full Text
    1. Capecchi M. R.
    (1989) Altering the genome by homologous recombination. [Review]. Science 244, 1288–1292
    OpenUrlAbstract/FREE Full Text
    1. Chellaiah A. T.,
    2. McEwen D. G.,
    3. Werner S.,
    4. Xu J.,
    5. Ornitz D. M.
    (1994) Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem 269, 11620–11627
    OpenUrlAbstract/FREE Full Text
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Ciruna B. G.,
    2. Schwartz L.,
    3. Harpal K.,
    4. Yamaguchi T. P.,
    5. Rossant J.
    (1997) Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829–2841
    OpenUrlAbstract
    1. Cohn M. J.,
    2. Izpisua-Belmonte J. C.,
    3. Abud H.,
    4. Heath J. K.,
    5. Tickle C.
    (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746
    OpenUrlCrossRefPubMedWeb of Science
    1. Colvin J. S.,
    2. Bohne B. A.,
    3. Harding G. W.,
    4. McEwen D. G.,
    5. Ornitz D. M.
    (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet 12, 390–397
    OpenUrlCrossRefPubMedWeb of Science
    1. Cross J. C.,
    2. Werb Z.,
    3. Fisher S. J.
    (1994) Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518
    OpenUrlAbstract/FREE Full Text
    1. Crossley P. H.,
    2. Martin G. R.
    (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451
    OpenUrlAbstract
    1. Crossley P. H.,
    2. Minowada G.,
    3. MacArthur C. A.,
    4. Martin G. R.
    (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng C.,
    2. Bedford M.,
    3. Li C.,
    4. Xu X.,
    5. Yang X.,
    6. Dunmore J.,
    7. Leder P.
    (1997) Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol 185, 42–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng C.,
    2. Wynshaw-Boris A.,
    3. Zhou F.,
    4. Kuo A.,
    5. Leder P.
    (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–21
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng C. X.,
    2. Wynshaw-Boris A.,
    3. Shen M. M.,
    4. Daugherty C.,
    5. Ornitz D. M.,
    6. Leder P.
    (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8, 3045–3057
    OpenUrlAbstract/FREE Full Text
    1. DeVore D. L.,
    2. Horvitz H. R.,
    3. Stern M. J.
    (1995) An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell 83, 611–620
    OpenUrlCrossRefPubMedWeb of Science
    1. Fallon J. F.,
    2. Lopez A.,
    3. Ros M. A.,
    4. Savage M. P.,
    5. Olwin B. B.,
    6. Simandl B. K.
    (1994) FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107
    OpenUrlAbstract/FREE Full Text
    1. Feldman B.,
    2. Poueymirou W.,
    3. Papaioannou V. E.,
    4. DeChiara T. M.,
    5. Goldfarb M.
    (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249
    OpenUrlAbstract/FREE Full Text
    1. Gisselbrecht S.,
    2. Skeath J. B.,
    3. Doe C. Q.,
    4. Michelson A. M.
    (1996) Heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev 10, 3003–17
    OpenUrlAbstract/FREE Full Text
    1. Givol D.,
    2. Yayon A.
    (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEBJ 6, 3362–3369
    OpenUrlAbstract
    1. Gray T. E.,
    2. Eisenstein M.,
    3. Shimon T.,
    4. Givol D.,
    5. Yayon A.
    (1995) Molecular modeling based mutagenesis defines ligand binding and specificity determining regions of fibroblast growth factor receptors. Biochemistry 34, 10325–10333
    OpenUrlCrossRefPubMed
    1. Green P. J.,
    2. Walsh F. S.,
    3. Doherty P.
    (1996) Promiscuity of fibroblast growth factor receptors. BioEssays 18, 639–646
    OpenUrlCrossRefPubMedWeb of Science
    1. Grieshammer U.,
    2. Minowada G.,
    3. Pisenti J. M.,
    4. Abbott U. K.,
    5. Martin G. R.
    (1996) The chick limbless mutation causes abnormalities in limb bud dorsal-ventral patterning: implications for the mechanism of apical ridge formation. Development 122, 3851–3861
    OpenUrlAbstract
    1. Guillemot F.,
    2. Nagy A.,
    3. Auerbach A.,
    4. Rossant J.,
    5. Joyner A. L.
    (1994) Essential role of Mash-2 in extraembryonic development. Nature 371, 333–336
    OpenUrlCrossRefPubMed
    1. Guo L.,
    2. Degenstein L.,
    3. Fuchs E.
    (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 10, 165–175
    OpenUrlAbstract/FREE Full Text
    1. Gurtner G. C.,
    2. Davis V.,
    3. Li H.,
    4. McCoy M. J.,
    5. Sharpe A.,
    6. Cybulsky M. I.
    (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9, 1–14
    OpenUrlAbstract/FREE Full Text
    1. Hebert J. M.,
    2. Rosenquist T.,
    3. Gotz J.,
    4. Martin G. R.
    (1994) FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78, 1017–1025
    OpenUrlCrossRefPubMedWeb of Science
    1. Heikinheimo M.,
    2. Lawshe A.,
    3. Shackleford G. M.,
    4. Wilson D. B.,
    5. MacArthur C. A.
    (1994) Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the fact, limbs and central nervous system. Mech. Dev 48, 129–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson D. E.,
    2. Williams L. T.
    (1993) Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res 60, 1–41
    OpenUrlPubMedWeb of Science
    1. Kwee L.,
    2. Baldwin H. S.,
    3. Shen H. M.,
    4. Stewart C. L.,
    5. Buck C.,
    6. Buck C. A.,
    7. Labow M. A.
    (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121, 489–503
    OpenUrlAbstract
    1. Laufer E.,
    2. Nelson C. E.,
    3. Johnson R. L.,
    4. Morgan B. A.,
    5. Tabin C.
    (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Lescisin K. R.,
    2. Varmuza S.,
    3. Rossant J.
    (1988) Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes Dev 2, 1639–1646
    OpenUrlAbstract/FREE Full Text
    1. Li E.,
    2. Bestor T. H.,
    3. Jaenisch R.
    (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926
    OpenUrlCrossRefPubMedWeb of Science
    1. MacArthur C. A.,
    2. Lawshe A.,
    3. Xu J.,
    4. Santos-Ocampo S.,
    5. Heikinheimo M.,
    6. Chellaiah A. T.,
    7. Ornitz D. M.
    (1995) FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121, 3603–3613
    OpenUrlAbstract
    1. Mahmood R.,
    2. Bresnick J.,
    3. Hornbruch A.,
    4. Mahony C.,
    5. Morton N.,
    6. Colquhoun K.,
    7. Martin P.,
    8. Lumsden A.,
    9. Dickson C.,
    10. Mason I.
    (1995) A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol 5, 797–806
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansour S. L.,
    2. Goddard J. M.,
    3. Capecchi M. R.
    (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Mason I.
    (1994) Cell signalling. Do adhesion molecules signal via FGF receptors?. Curr. Biol 4, 1158–1161
    OpenUrlCrossRefPubMedWeb of Science
    1. McWhirter J. R.,
    2. Goulding M.,
    3. Weiner J. A.,
    4. Chun J.,
    5. Murre C.
    (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development 124, 3221–3232
    OpenUrlAbstract
    1. Muenke M.,
    2. Schell U.
    (1995) Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet 11, 308–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Niswander L.,
    2. Jeffrey S.,
    3. Martin G. R.,
    4. Tickle C.
    (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb [see comments]. Nature 371, 609–612
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Martin G. R.
    (1993) FGF-4 and BMP-2 have opposite effects on limb growth. Nature 361, 68–71
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Tickle C.,
    3. Vogel A.,
    4. Booth I.,
    5. Martin G. R.
    (1993) FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohuchi H.,
    2. Nakagawa T.,
    3. Yamamoto A.,
    4. Araga A.,
    5. Ohata T.,
    6. Ishimaru Y.,
    7. Yoshioka H.,
    8. Kuwana T.,
    9. Nohno T.,
    10. Yamasaki M.,
    11. Itoh N.,
    12. Noji S.
    (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244
    OpenUrlAbstract
    1. Ornitz D. M.,
    2. Xu J.,
    3. Colvin J. S.,
    4. McEwen D. G.,
    5. MacArthur C. A.,
    6. Coulier F.,
    7. Gao G.,
    8. Goldfarb M.
    (1996) Receptor specificity of the fibroblast growth factor family. J. Biol. Chem 271, 15292–15297
    OpenUrlAbstract/FREE Full Text
    1. Orr-Urtreger A.,
    2. Bedford M. T.,
    3. Burakova T.,
    4. Arman E.,
    5. Zimmer Y.,
    6. Yayon A.,
    7. Givol D.,
    8. Lonai P.
    (1993) Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol 158, 475–486
    OpenUrlCrossRefPubMedWeb of Science
    1. Orr-Urtreger A.,
    2. Givol D.,
    3. Yayon A.,
    4. Yarden Y.,
    5. Lonai P.
    (1991) Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113, 1419–1434
    OpenUrlAbstract
    1. Peters K.,
    2. Ornitz D.,
    3. Werner S.,
    4. Williams L.
    (1993) Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol 155, 423–430
    OpenUrlCrossRefPubMedWeb of Science
    1. Peters K.,
    2. Werner S.,
    3. Liao X.,
    4. Wert S.,
    5. Whitsett J.,
    6. Williams L.
    (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBOJ 13, 3296–301
    OpenUrlPubMedWeb of Science
    1. Peters K. G.,
    2. Werner S.,
    3. Chen G.,
    4. Williams L. T.
    (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114, 233–243
    OpenUrlAbstract
    1. Przylepa K. A.,
    2. Paznekas W.,
    3. Zhang M.,
    4. Golabi M.,
    5. Bias W.,
    6. Bamshad M. J.,
    7. Carey J. C.,
    8. Hall B. D.,
    9. Stevenson R.,
    10. Orlow S.,
    11. Cohen M. M., Jr.,
    12. Jabs E. W.
    (1996) Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrata syndrome. Nat. Genet 13, 492–494
    OpenUrlCrossRefPubMedWeb of Science
    1. Reichman-Fried M.,
    2. Dickson B.,
    3. Hafen E.,
    4. Shilo B. Z.
    (1994) Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev 8, 428–439
    OpenUrlAbstract/FREE Full Text
    1. Reichman-Fried M.,
    2. Shilo B. Z.
    (1995) Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation. Mech. Dev 52, 265–273
    OpenUrlCrossRefPubMedWeb of Science
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic-hedgehog mediates the polarizing activity of the zpa. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Ros M. A.,
    2. Lopez-Martinez A.,
    3. Simandl B. K.,
    4. Rodriguez C.,
    5. Izpisua Belmonte J. C.,
    6. Dahn R.,
    7. Fallon J. F.
    (1996) The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122, 2319–2330
    OpenUrlAbstract
    1. Savage M. P.,
    2. Fallon J. F.
    (1995) FGF-2 mRNA and its antisense message are expressed in a developmentally specific manner in the chick limb bud and mesonephros. Dev. Dyn 202, 343–353
    OpenUrlCrossRefPubMedWeb of Science
    1. Sibilia M.,
    2. Wagner E. F.
    (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor [published erratum appears in Science (1995) No, 5226, page 909. Science 269, 234–238
    OpenUrlAbstract/FREE Full Text
    1. Smallwood P. M.,
    2. Munoz-Sanjuan I.,
    3. Tong P.,
    4. Macke J. P.,
    5. Hendry S. H.,
    6. Gilbert D. J.,
    7. Copeland N. G.,
    8. Jenkins N. A.,
    9. Nathans J.
    (1996) Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA 93, 9850–9857
    OpenUrlAbstract/FREE Full Text
    1. Stark K. L.,
    2. McMahon J. A.,
    3. McMahon A. P.
    (1991) FGFR-4, a newmember of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113, 641–651
    OpenUrlAbstract
    1. Stephens T. D.,
    2. Beier R. L.,
    3. Bringhurst D. C.,
    4. Hiatt S. R.,
    5. Prestridge M.,
    6. Pugmire D. E.,
    7. Willis H. J.
    (1989) Limbness in the early chick embryo lateral plate. Dev. Biol 133, 1–7
    OpenUrlCrossRefPubMed
    1. Tabin C.
    (1995) The initiation of the limb bud: growth factors, Hox genes, and retinoids. Cell 80, 671–674
    OpenUrlCrossRefPubMedWeb of Science
    1. Threadgill D. W.,
    2. Dlugosz A. A.,
    3. Hansen L. A.,
    4. Tennenbaum T.,
    5. Lichti U.,
    6. Yee D.,
    7. LaMantia C.,
    8. Mourton T.,
    9. Herrup K.,
    10. Harris R. C.,
    11. et al.
    (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234
    OpenUrlAbstract/FREE Full Text
    1. Tybulewicz V. L.,
    2. Crawford C. E.,
    3. Jackson P. K.,
    4. Bronson R. T.,
    5. Mulligan R. C.
    (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163
    OpenUrlCrossRefPubMedWeb of Science
    1. Verdier A. S.,
    2. Mattei M. G.,
    3. Lovec H.,
    4. Hartung H.,
    5. Goldfarb M.,
    6. Birnbaum D.,
    7. Coulier F.
    (1997) Chromosomal mapping of two novel human FGF genes, FGF11 and FGF12. Genomics 40, 151–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Vogel A.,
    2. Rodriguez C.,
    3. Izpisua-Belmonte J. C.
    (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750
    OpenUrlAbstract
    1. Werner S.,
    2. Weinberg W.,
    3. Liao X.,
    4. Peters K. G.,
    5. Blessing M.,
    6. Yuspa S. H.,
    7. Weiner R. L.,
    8. Williams L. T.
    (1993) Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J 12, 2635–2643
    OpenUrlPubMedWeb of Science
    1. Williams E. J.,
    2. Furness J.,
    3. Walsh F. S.,
    4. Doherty P.
    (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamaguchi T. P.,
    2. Conlon R. A.,
    3. Rossant J.
    (1992) Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Developmental Biology 152, 75–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamaguchi T. P.,
    2. Harpal K.,
    3. Henkemeyer M.,
    4. Rossant J.
    (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8, 3032–3044
    OpenUrlAbstract/FREE Full Text
    1. Yamasaki M.,
    2. Miyake A.,
    3. Tagashira S.,
    4. Itoh N.
    (1996) Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem 271, 15918–15921
    OpenUrlAbstract/FREE Full Text
    1. Yang J. T.,
    2. Rayburn H.,
    3. Hynes R. O.
    (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121, 549–560
    OpenUrlAbstract
    1. Yayon A.,
    2. Zimmer Y.,
    3. Shen G. H.,
    4. Avivi A.,
    5. Yarden Y.,
    6. Givol D.
    (1992) A confined variable region confers ligand specificity on fibroblast growth factor receptors: implications for the origin of the immunoglobulin fold. EMBOJ 11, 1885–1890
    OpenUrlPubMedWeb of Science
    1. Zimmer Y.,
    2. Givol D.,
    3. Yayon A.
    (1993) Multiple structural elements determine ligand binding of fibroblast growth factor receptors. Evidence that both Ig domain 2 and 3 define receptor specificity. J. Biol. Chem 268, 7899–7903
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction
X. Xu, M. Weinstein, C. Li, M. Naski, R.I. Cohen, D.M. Ornitz, P. Leder, C. Deng
Development 1998 125: 753-765;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction
X. Xu, M. Weinstein, C. Li, M. Naski, R.I. Cohen, D.M. Ornitz, P. Leder, C. Deng
Development 1998 125: 753-765;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992