Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Control of somite patterning by Sonic hedgehog and its downstream signal response genes
A.G. Borycki, L. Mendham, C.P. Emerson
Development 1998 125: 777-790;
A.G. Borycki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Mendham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.P. Emerson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In the avian embryo, previous work has demonstrated that the notochord provides inductive signals to activate myoD and pax1 regulatory genes, which are expressed in the dorsal and ventral somite cells that give rise to myotomal and sclerotomal lineages. Here, we present bead implantation and antisense inhibition experiments that show that Sonic hedgehog is both a sufficient and essential notochord signal molecule for myoD and pax1 activation in somites. Furthermore, we show that genes of the Sonic hedgehog signal response pathway, specifically patched, the Sonic hedgehog receptor, and gli and gli2/4, zinc-finger transcription factors, are activated in coordination with somite formation, establishing that Sonic hedgehog response genes play a regulatory role in coordinating the response of somites to the constitutive notochord Sonic hedgehog signal. Furthermore, the expression of patched, gli and gli2/4 is differentially patterned in the somite, providing mechanisms for differentially transducing the Sonic hedgehog signal to the myotomal and sclerotomal lineages. Finally, we show that the activation of gli2/4 is controlled by the process of somite formation and signals from the surface ectoderm, whereas upregulation of patched and activation of gli is controlled by the process of somite formation and a Sonic hedgehog signal. The Sonic hedgehog signal response genes, therefore, have important functions in regulating the initiation of the Sonic hedgehog response in newly forming somites and in regulating the patterned expression of myoD and pax1 in the myotomal and sclerotomal lineages following somite formation.

REFERENCES

    1. Alcedo J.,
    2. Ayzenzon M.,
    3. Von Ohlen T.,
    4. Noll M.,
    5. Hooper J. E.
    (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232
    OpenUrlCrossRefPubMedWeb of Science
    1. Angela Nieto M.,
    2. Sargent M. G.,
    3. Wilkinson D. G.,
    4. Cooke J.
    (1994) Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835–839
    OpenUrlAbstract/FREE Full Text
    1. Bitgood M. J.,
    2. McMahon A. P.
    (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol 172, 126–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Blagden C. S.,
    2. Currie P. D.,
    3. Ingham P. W.,
    4. Hughes S. M.
    (1997) Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev 11, 2163–2175
    OpenUrlAbstract/FREE Full Text
    1. Borycki A. G.,
    2. Strunk K.,
    3. Savary R.,
    4. Emerson C. P., Jr
    (1997) Distinct signal/response mechanisms regulate pax1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites. Dev. Biol 185, 185–200
    OpenUrlCrossRefPubMedWeb of Science
    1. Braun T.,
    2. Bober E.,
    3. Buschhausen-Denker G.,
    4. Kohtz S.,
    5. Grzeschik K. H.,
    6. Arnold H. H.,
    7. Kohtz S.
    (1989) Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J 8, 3617–3625
    OpenUrlPubMedWeb of Science
    1. Braun T.,
    2. Buschhausen-Denker G.,
    3. Bober E.,
    4. Tannich E.,
    5. Arnold H. H.
    (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8, 701–709
    OpenUrlPubMedWeb of Science
    1. Braun T.,
    2. Rudnicki M. A.,
    3. Arnold H. H.,
    4. Jaenisch R.
    (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71, 369–382
    OpenUrlCrossRefPubMedWeb of Science
    1. Buckingham M.
    (1992) Making muscle in mammals. Trends Genet 8, 144–148
    OpenUrlPubMedWeb of Science
    1. Bumcrot D. A.,
    2. McMahon A. P.
    (1995) Somite differentiation. Sonic signals somites. Curr. Biol 5, 612–614
    OpenUrlCrossRefPubMedWeb of Science
    1. Burke R.,
    2. Basler K.
    (1997) Hedgehog signaling in Drosophila eye and limb development—conserved machinery, divergent roles?. Curr. Op. Neurobiol 7, 55–61
    OpenUrlCrossRefPubMed
    1. Charles de la Brousse F.,
    2. Emerson C. P., Jr
    (1990) Localized expression of a myogenic regulatory gene, qmf1, in the somite dermatome of avian embryos. Genes Dev 4, 567–581
    OpenUrlAbstract/FREE Full Text
    1. Chen Y.,
    2. Struhl G.
    (1996) Dual roles for patched in sequestring and transducing hedgehog. Cell 87, 553–563
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMed
    1. Christ B.,
    2. Ordahl C. P.
    (1995) Early stages of chick somite development. Anat. Embryol 191, 381–396
    OpenUrlCrossRefPubMed
    1. Cossu G.,
    2. Kelly R.,
    3. Tajbakhsh S.,
    4. Di Donna S.,
    5. Vivarelli E.,
    6. Buckingham M.
    (1996) Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development 122, 429–437
    OpenUrlAbstract
    1. Cserjesi P.,
    2. Brown D.,
    3. Ligon K. L.,
    4. Lyons G. E.,
    5. Copeland N. G.,
    6. Gilbert D. J.,
    7. Jenkins N. A.,
    8. Olson E. N.
    (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121, 1099–1110
    OpenUrlAbstract
    1. Currie P. D.,
    2. Ingham P. W.
    (1996) Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382, 452–455
    OpenUrlCrossRefPubMed
    1. Davis R. L.,
    2. Weintraub H.,
    3. Lassar A. B.
    (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000
    OpenUrlCrossRefPubMedWeb of Science
    1. Deutsch U.,
    2. Dressler G. R.,
    3. Gruss P.
    (1988) Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell 53, 617–625
    OpenUrlCrossRefPubMedWeb of Science
    1. Ebensperger C.,
    2. Wilting J.,
    3. Brand-Saberi B.,
    4. Mizutani Y.,
    5. Christ B.,
    6. Balling R.,
    7. Koseki H.
    (1995) Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos. Anat. Embryol 191, 297–310
    OpenUrlCrossRefPubMed
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ekker S. C.,
    2. Ungar A. R.,
    3. Greenstein P.,
    4. von Kessler D. P.,
    5. Porter J. A.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol 5, 944–955
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Fan C. M.,
    2. Tessier-Lavigne M.
    (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldhamer D. J.,
    2. Faerman A.,
    3. Shani M.,
    4. Emerson C. P., Jr
    (1992) Regulatory elements that control the lineage-specific expression of myoD. Science 256, 538–542
    OpenUrlAbstract/FREE Full Text
    1. Goodrich L. V.,
    2. Johnson R. L.,
    3. Milenkovic L.,
    4. McMahon J.,
    5. Scott M.
    (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev 10, 301–312
    OpenUrlAbstract/FREE Full Text
    1. Hirsinger E.,
    2. Duprez D.,
    3. Jouve C.,
    4. Malapert P.,
    5. Cooke J.,
    6. Pourquie O.
    (1997) Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124, 4605–4614
    OpenUrlAbstract
    1. Hughes D. C.,
    2. Allen J.,
    3. et al.
    (1997) Cloning and sequencing of the mouse Gli2 gene: localization to the Dominant hemimelia critical region. Genomics 39, 205–215
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C. C.,
    2. Slusarski D.,
    3. Platt K. A.,
    4. Holmgren R.,
    5. Joyner A. L.
    (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm-and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev. Biol 162, 402–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Isaac A.,
    2. Sargent M. G.,
    3. Cooke J.
    (1997) Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science 275, 1301–1304
    OpenUrlAbstract/FREE Full Text
    1. Jensen A. M.,
    2. Wallace V. A.
    (1997) Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124, 363–371
    OpenUrlAbstract
    1. Johnson R. L.,
    2. Laufer E.,
    3. Riddle R. D.,
    4. Tabin C.
    (1994) Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79, 1165–1173
    OpenUrlCrossRefPubMed
    1. Koseki H.,
    2. Wallin J.,
    3. Wilting J.,
    4. Mizutani Y.,
    5. Kispert A.,
    6. Ebensperger C.,
    7. Herrmann B. G.,
    8. Christ B.,
    9. Balling R.
    (1993) A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119, 649–660
    OpenUrlAbstract/FREE Full Text
    1. Koyama E.,
    2. Yamaai T.,
    3. et al.
    (1996) Polarizing activity, Sonic hedgehog, and tooth development in embryonic and postnatal mouse. Dev. Dyn 206, 59–72
    OpenUrlCrossRefPubMedWeb of Science
    1. Krumlauf R.
    (1994) Hox genes in vertebrate development. Cell 78, 191–201
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassar A. B.,
    2. Munsterberg A. E.
    (1996) The role of positive and negative signals in somite patterning. Curr. Op. Neurobiol 6, 57–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J.,
    2. Platt K. A.,
    3. Censullo P.,
    4. Ruiz i Altaba A.
    (1997) Gli1 is atarget of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552
    OpenUrlAbstract
    1. Li H. S.,
    2. Yang J. M.,
    3. Jacobson R. D.,
    4. Pasko D.,
    5. Sundin O.
    (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol 162, 181–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Li L.,
    2. Cserjesi P.,
    3. Olson E. N.
    (1995) Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev. Biol 172, 280–292
    OpenUrlCrossRefPubMedWeb of Science
    1. Marcelle C.,
    2. Stark M. R.,
    3. Bronner-Fraser M.
    (1997) Coordinate actions of BMPs, Shh and Noggin mediate patterning of the dorsal somite. Development 124, 3955–3963
    OpenUrlAbstract
    1. Marigo V.,
    2. Davey R. A.,
    3. Zuo Y.,
    4. Cunningham J. M.,
    5. Tabin C. J.
    (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179
    OpenUrlCrossRefPubMed
    1. Marigo V.,
    2. Johnson R. L.,
    3. Vortkamp A.,
    4. Tabin C. J.
    (1996) Sonic hedgehog differentially regulates expression of gli and gli3 during limb development. Dev. Biol 180, 273–283
    OpenUrlCrossRefPubMedWeb of Science
    1. Marigo V.,
    2. Scott M. P.,
    3. Johnson R. L.,
    4. Goodrich L. V.,
    5. Tabin C. J.
    (1996) Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122, 1225–1233
    OpenUrlAbstract
    1. Marine J.-C.,
    2. Bellefoid E. J.,
    3. Pendeville H.,
    4. Martial J. A.,
    5. Pieler T.
    (1997) A role for Xenopus Gli-type zinc-finger proteins in the early embbryonic paterning of the mesoderm and neuroectoderm. Mech. Dev 63, 211–225
    OpenUrlCrossRefPubMed
    1. Maroto M.,
    2. Reshef R.,
    3. Munsterberg A. E.,
    4. Koester S.,
    5. Goulding M.,
    6. Lassar A. B.
    (1997) Ectopic pax-3 activates myoD and myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139–148
    OpenUrlCrossRefPubMedWeb of Science
    1. Marti E.,
    2. Bumcrot D. A.,
    3. Takada R.,
    4. McMahon A. P.
    (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants [see comments]. Nature 375, 322–325
    OpenUrlCrossRefPubMed
    1. Marti E.,
    2. Takada R.,
    3. Bumcrot D. A.,
    4. Sasaki H.,
    5. McMahon A. P.
    (1995) Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547
    OpenUrlAbstract
    1. Mo R.,
    2. Freer A. M.,
    3. et al.
    (1997) Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123
    OpenUrlAbstract
    1. Munsterberg A. E.,
    2. Kitajewski J.,
    3. Bumcrot D. A.,
    4. McMahon A. P.,
    5. Lassar A. B.
    (1995) Combinatorial signaling by sonic hedgehog and wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9, 2911–2922
    OpenUrlAbstract/FREE Full Text
    1. Parr B. A.,
    2. McMahon A. P.
    (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353
    OpenUrlCrossRefPubMed
    1. Pinney D. F.,
    2. de la Brousse F. C.,
    3. Faerman A.,
    4. Shani M.,
    5. Maruyama K.,
    6. Emerson C. P., Jr
    (1995) Quail myoD is regulated by a complex array of cis-acting control sequences. Dev. Biol 170, 21–38
    OpenUrlCrossRefPubMed
    1. Pourquie O.,
    2. Fan C. M.,
    3. et al.
    (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84, 461–471
    OpenUrlCrossRefPubMed
    1. Pownall M. E.,
    2. Emerson C. P., Jr
    (1992) Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev. Biol 151, 67–79
    OpenUrlCrossRefPubMedWeb of Science
    1. Pownall M. E.,
    2. Strunk K. E.,
    3. Emerson C. P., Jr
    (1996) Notochord signals control the transcriptional cascade of myogenic bHLH genes in somites of quail embryos. Development 122, 1475–1488
    OpenUrlAbstract
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts D. J.,
    2. Johnson R. L.,
    3. Burke A. C.,
    4. Nelson C. E.,
    5. Morgan B. A.,
    6. Tabin C.
    (1995) Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174
    OpenUrlAbstract
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Rudnicki M. A.,
    2. Braun T.,
    3. Hinuma S.,
    4. Jaenisch R.
    (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383–390
    OpenUrlCrossRefPubMedWeb of Science
    1. Rudnicki M. A.,
    2. Schnegelsberg P. N.,
    3. Stead R. H.,
    4. Braun T.,
    5. Arnold H. H.,
    6. Jaenisch R.
    (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351–1359
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Placzek M.,
    3. Baldassare M.,
    4. Dodd J.,
    5. Jessell T. M.
    (1995) Early stages of notochord and floor plate development in the chick embryo defined by normal and induced expression of HNF-3 beta. Dev. Biol 170, 299–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruppert J. M.,
    2. Vogelstein B.,
    3. Arheden K.,
    4. Kinzler K. W.
    (1990) GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol. Cell. Biol 10, 5408–5415
    OpenUrlAbstract/FREE Full Text
    1. Sasaki H.,
    2. Hui C.,
    3. Nakafuku M.,
    4. Kondoh H.
    (1997) A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322
    OpenUrlAbstract
    1. Srivastava D.,
    2. Cserjesi P.,
    3. Olson E. N.
    (1995) A subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999
    OpenUrlAbstract/FREE Full Text
    1. Standiford D. M.,
    2. Davis M. B.,
    3. Miedema K.,
    4. Franzini-Armstrong C.,
    5. Emerson C. P., Jr
    (1997) Myosin rod protein: a novel thick filament component of Drosophila muscle. J. Mol. Biol 265, 40–55
    OpenUrlCrossRefPubMed
    1. Stone D. M.,
    2. Hynes M.,
    3. et al.
    (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134
    OpenUrlCrossRefPubMed
    1. Tajbakhsh S.,
    2. Rocancourt D.,
    3. Buckingham M.
    (1996) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf5 null mice. Nature 384, 266–270
    OpenUrlCrossRefPubMed
    1. Tajbakhsh S.,
    2. Rocancourt D.,
    3. Cossu G.,
    4. Buckingham M.
    (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: pax-3 and myf-5 act upstream of myoD. Cell 89, 127–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanimura A.,
    2. Teshima H.,
    3. Fujisawa J.,
    4. Yoshida M.
    (1993) A new regulatory element that augments the Tax-dependent enhancer of human T-cell leukemia virus type 1 and cloning of cDNAs encoding its binding proteins. J. Virol 67, 5375–5382
    OpenUrlAbstract/FREE Full Text
    1. Thien H.,
    2. Buscher D.,
    3. Ruther U.
    (1996) Cloning and sequence analysis of the murine Gli3 cDNA. Bioch. Bioph. Act 1307, 267–269
    OpenUrlPubMed
    1. van den Heuvel M.,
    2. Ingham P. W.
    (1996) smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551
    OpenUrlCrossRefPubMed
    1. Vortkamp A.,
    2. Gessler M.,
    3. Grzeschik K. H.
    (1995) Identification of optimized target sequences for the GLI3 zinc finger protein. DNA & Cell Biology 14, 629–634
    OpenUrlPubMedWeb of Science
    1. Vortkamp A.,
    2. Lee K.,
    3. Lanske B.,
    4. Segre G. V.,
    5. Kronenberg H. M.,
    6. Tabin C. J.
    (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622
    OpenUrlAbstract
    1. Weinberg E. S.,
    2. Allende M. L.,
    3. Kelly C. S.,
    4. Abdelhamid A.,
    5. Murakami T.,
    6. Andermann P.,
    7. Doerre O. G.,
    8. Grunwald D. J.,
    9. Riggleman B.
    (1996) Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122, 271–280
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Control of somite patterning by Sonic hedgehog and its downstream signal response genes
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Control of somite patterning by Sonic hedgehog and its downstream signal response genes
A.G. Borycki, L. Mendham, C.P. Emerson
Development 1998 125: 777-790;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Control of somite patterning by Sonic hedgehog and its downstream signal response genes
A.G. Borycki, L. Mendham, C.P. Emerson
Development 1998 125: 777-790;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992