Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice
D.E. Clouthier, K. Hosoda, J.A. Richardson, S.C. Williams, H. Yanagisawa, T. Kuwaki, M. Kumada, R.E. Hammer, M. Yanagisawa
Development 1998 125: 813-824;
D.E. Clouthier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Hosoda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.A. Richardson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.C. Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Yanagisawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Kuwaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Kumada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.E. Hammer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Yanagisawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Neural crest cells arise in the dorsal aspect of the neural tube and migrate extensively to differentiate into a variety of neural and non-neural tissues. While interactions between neural crest cells and their local environments are required for the proper development of these tissues, little information is available about the molecular nature of the cell-cell interactions in cephalic neural crest development. Here we demonstrate that mice deficient for one type of endothelin receptor, ETA, mimic the human conditions collectively termed CATCH 22 or velocardiofacial syndrome, which include severe craniofacial deformities and defects in the cardiovascular outflow tract. We show that ETA receptor mRNA is expressed by the neural crest-derived ectomesenchymal cells of pharyngeal arches and cardiac outflow tissues, whereas ET-1 ligand mRNA is expressed by arch epithelium, paraxial mesoderm-derived arch core and the arch vessel endothelium. This suggests that paracrine interaction between neural crest-derived cells and both ectoderm and mesoderm is essential in forming the skeleton and connective tissue of the head. Further, we find that pharyngeal arch expression of goosecoid is absent in ETA receptor-deficient mice, placing the transcription factor as one of the possible downstream signals triggered by activation of the ETA receptor. These observations define a novel genetic pathway for inductive communication between cephalic neural crest cells and their environmental counterparts.

REFERENCES

    1. Andermarcher E.,
    2. Surani M. A.,
    3. Gherardi E.
    (1996) Co-expression of the HGF/SF and c- met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev. Genet 18, 254–266
    OpenUrlCrossRefPubMedWeb of Science
    1. Anderson D. J.
    (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 13, 276–280
    OpenUrlCrossRefPubMedWeb of Science
    1. Arai H.,
    2. Hori S.,
    3. Aramori I.,
    4. Ohkubo H.,
    5. Nakanishi S.
    (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732
    OpenUrlCrossRefPubMed
    1. Baynash A. G.,
    2. Hosoda K.,
    3. Giaid A.,
    4. Richardson J. A.,
    5. Emoto N.,
    6. Hammer R. E.,
    7. Yanagisawa M.
    (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285
    OpenUrlCrossRefPubMedWeb of Science
    1. Benjamin I.,
    2. Shelton J.,
    3. Garry D. J.,
    4. Richardson J. A.
    (1997) Temporospatial expression of the small HSP/B-crystallin in cardiac and skeletal muscle during mouse development. Dev. Dyn 208, 75–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Blum M.,
    2. Gaunt S. J.,
    3. Cho K. W. Y.,
    4. Steinbeisser H.,
    5. Blumberg B.,
    6. Bittner D.,
    7. De Robertis E. M.
    (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69, 1097–1106
    OpenUrlCrossRefPubMedWeb of Science
    1. Brannan C. I.,
    2. Perkins A. S.,
    3. Vogel K. S.,
    4. Ratner N.,
    5. Nordlund M. L.,
    6. Reid S. W.,
    7. Buchberg A. M.,
    8. Jenkins N. A.,
    9. Parada L. F.,
    10. Copeland N. G.
    (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8, 1019–1029
    OpenUrlAbstract/FREE Full Text
    1. Bronner-Fraser M.
    (1995) Origins and developmental potential of the neural crest. Exp. Cell Res 218, 405–417
    OpenUrlCrossRefPubMedWeb of Science
    1. Chisaka O.,
    2. Capecchi M. R.
    (1991). Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350, 473–479
    OpenUrlCrossRefPubMed
    1. Choi D.-S.,
    2. Ward S. J.,
    3. Messaddeq N.,
    4. Launay J.-M.,
    5. Maroteaux L.
    (1997) 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 124, 1745–1755
    OpenUrlAbstract
    1. Conway S. J.,
    2. Henderson D. J.,
    3. Copp A. J.
    (1997) Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124, 505–514
    OpenUrlAbstract
    1. Couly G. F.,
    2. Coltey P. M.,
    3. Le Douarin N. M.
    (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429
    OpenUrlAbstract
    1. Cserjesi P.,
    2. Brown D.,
    3. Lyons G. E.,
    4. Olson E. N.
    (1995) Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev. Biol 170, 664–678
    OpenUrlCrossRefPubMedWeb of Science
    1. Davis C. A.,
    2. Holmyard D. P.,
    3. Millen K. J.,
    4. Joyner A. L.
    (1991) Examining pattern formation in mouse, chicken and frog embryos with an En -specific antiserum. Development 111, 287–298
    OpenUrlAbstract
    1. Dolle P.,
    2. Price M.,
    3. Duboule D.
    (1992) Expression of the murine Dlx-1 homeobox gene during facial, ocular and limb development. Differentiation 49, 93–99
    OpenUrlCrossRefPubMedWeb of Science
    1. Donovan M. J.,
    2. Hahn R.,
    3. Tessarollo L.,
    4. Hempstead B. L.
    (1996) Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nature Genet 14, 210–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Gaunt S. J.,
    2. Blum M.,
    3. De Robertis E. M.
    (1993) Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and body wall. Development 117, 769–778
    OpenUrlAbstract
    1. Goldberg R.,
    2. Motzkin B.,
    3. Marion R.,
    4. Scambler P. J.,
    5. Shprintzen R. J.
    (1993) Velo-cardio-facial syndrome: A review of 120 patients. Am. J. Med. Genet 45, 313–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Gottlieb S.,
    2. Emanuel B. S.,
    3. Driscoll D. A.,
    4. Sellinger B.,
    5. Wang Z.,
    6. Roe B.,
    7. Budarf M. L.
    (1997) The DiGeorge syndrome minimal critical region contains a goosecoid -like (GSCL) homeobox gene that is expressed early in human development. Am. J. Hum. Genet 60, 1194–1201
    OpenUrlPubMedWeb of Science
    1. Hori S.,
    2. Komatsu Y.,
    3. Shigemoto R.,
    4. Mizuno N.,
    5. Nakanishi S.
    (1992) Distinct tissue distribution and cellular localization of two messenger ribonucleic acids encoding different subtypes of rat endothelin receptors. Endocrinology 130, 1885–1895
    OpenUrlCrossRefPubMedWeb of Science
    1. Hosoda K.,
    2. Hammer R. E.,
    3. Richardson J. A.,
    4. Baynash A. G.,
    5. Cheung J. C.,
    6. Giaid A.,
    7. Yanagisawa M.
    (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276
    OpenUrlCrossRefPubMedWeb of Science
    1. Hunt P.,
    2. Giulisano M.,
    3. Cook M.,
    4. Sham M.-H.,
    5. Faiella A.,
    6. Wilkinson D.,
    7. Boncinelli E.,
    8. Krumlauf R.
    (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353, 861–864
    OpenUrlCrossRefPubMed
    1. Jegalian B. G.,
    2. De Robertis E. M.
    (1992). Homeotic transformations in the mouse induced by overexpression of a human Hox3.3 transgene. Cell 71, 901–910
    OpenUrlCrossRefPubMedWeb of Science
    1. Jessel T. M.,
    2. Melton D. A.
    (1992) Diffusible factors in vertebrate embryonic induction. Cell 68, 257–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Kirby M. L.,
    2. Waldo K. L.
    (1995) Neural crest and cardiovascular patterning. Circ. Res 77, 211–215
    OpenUrlFREE Full Text
    1. Kochhar D. M.
    (1973) Limb development in mouse embryos. I. Analysis of teratogenic effects of retinoic acid. Teratology 7, 289–298
    1. Kontges G.,
    2. Lumsden A.
    (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242
    OpenUrlAbstract
    1. Kuratani S. C.,
    2. Kirby M. L.
    (1991) Initial migration and distribution of the cardiac neural crest in the avian embryo: an introduction to the concept of the circumpharyngeal crest. Am. J. Anat 191, 215–227
    OpenUrlCrossRefPubMedWeb of Science
    1. Kurihara Y.,
    2. Kurihara H.,
    3. Oda H.,
    4. Maemura K.,
    5. Nagai R.,
    6. Ishikawa T.,
    7. Yazaki Y.
    (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J. Clin. Invest 96, 293–300
    1. Kurihara Y.,
    2. Kurihara H.,
    3. Suzuki H.,
    4. Kodama T.,
    5. Maemura K.,
    6. Nagai R.,
    7. Oda H.,
    8. Kuwaki T.,
    9. Cao W.-H.,
    10. Kamada N.,
    11. Jishage K.,
    12. Ouchi Y.,
    13. Azuma S.,
    14. Toyoda Y.,
    15. Ishikawa T.,
    16. Kumada M.,
    17. Yazaki Y.
    (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368, 703–710
    OpenUrlCrossRefPubMed
    1. Kuwaki T.,
    2. Cao W.-H.,
    3. Kurihara Y.,
    4. Kurihara H.,
    5. Ling G.-Y.,
    6. Onodera M.,
    7. Ju K.-H.,
    8. Yazaki Y.,
    9. Kumada M.
    (1996) Impaired ventilatory responses to hypoxia and hypercapnia in mutant mice deficient in endothelin-1. Am. J. Physiol 270, 1279–.
    OpenUrl
    1. Laufer E.,
    2. Nelson C. E.,
    3. Johnson R. L.,
    4. Morgan B. A.,
    5. Tabin C.
    (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Douarin N. M.,
    2. Ziller C.,
    3. Couly G. F.
    (1993) Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev. Biol 159, 24–49
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Lievre C. S.,
    2. Le Douarin N.
    (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol 34, 125–154
    OpenUrlPubMedWeb of Science
    1. Lohnes D.,
    2. Mark M.,
    3. Mendelsohn C.,
    4. Dolle P.,
    5. Dierich A.,
    6. Gorry P.,
    7. Gansmuller A.,
    8. Chambon P.
    (1994) Function of the retinoic acid receptors (RARs) during development. I. Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–2748
    OpenUrlAbstract
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    OpenUrlAbstract
    1. Maemura K.,
    2. Kurihara H.,
    3. Kurihara Y.,
    4. Oda H.,
    5. Ishikawa T.,
    6. Copeland N. G.,
    7. Gilbert D. J.,
    8. Jenkins N. A.,
    9. Yazaki Y.
    (1996) Sequence analysis, chromosomal location, and developmental expression of the mouse preproendothelin-1 gene. Genomics 31, 177–184
    OpenUrlCrossRefPubMed
    1. Mallo M.,
    2. Gridley T.
    (1996) Development of the mammalian ear: coordinate regulation of formation of the tympanic ring and the external acoustic meatus. Development 122, 173–179
    OpenUrlAbstract
    1. Martin J. F.,
    2. Bradley A.,
    3. Olson E. N.
    (1995) The paired -like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev 9, 1237–1249
    OpenUrlAbstract/FREE Full Text
    1. Matsuo I.,
    2. Kuratani S.,
    3. Kimura C.,
    4. Takeda N.,
    5. Aizawa S.
    (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9, 2646–2658
    OpenUrlAbstract/FREE Full Text
    1. McGuinness T.,
    2. Porteus M. H.,
    3. Smiga S.,
    4. Bulfone A.,
    5. Kingsley C.,
    6. Qiu M.,
    7. Liu J. K.,
    8. Long J. E.,
    9. Xu D.,
    10. Rubenstein J. L. R.
    (1996) Sequence, organization, and transcription of the Dlx-1 and Dlx-2 locus. Genomics 35, 473–485
    OpenUrlCrossRefPubMedWeb of Science
    1. Mendelsohn C.,
    2. Lohnes D.,
    3. Decimo D.,
    4. Lufkin T.,
    5. LeMeur M.,
    6. Chambon P.,
    7. Mark M.
    (1994) Function of the retinoic acid receptors (RARs) during development. 2. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771
    OpenUrlAbstract
    1. Niswander L.,
    2. Jeffrey S.,
    3. Martin G. R.,
    4. Tickle C.
    (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612
    OpenUrlCrossRefPubMed
    1. Noden D. M.
    (1988) Interactions and fates of avian craniofacial mesenchyme. Development 103, 121–140
    1. Offermanns S.,
    2. Mancino V.,
    3. Revel J.-P.,
    4. Simon M. I.
    (1997) Vascular system defects and impaired cell chemokinesis as a result of G13deficiency. Science 275, 533–536
    OpenUrlAbstract/FREE Full Text
    1. Oh S. P.,
    2. Li E.
    (1997) The signaling pathway mediated by the typeIIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev 11, 1812–1826
    OpenUrlAbstract/FREE Full Text
    1. Olson E. N.,
    2. Srivastava D.
    (1996) Molecular pathways controlling heart development. Science 272, 671–676
    OpenUrlAbstract/FREE Full Text
    1. Price M.,
    2. Lemaistre M.,
    3. Pischetola M.,
    4. Di Lauro R.,
    5. Duboule D.
    (1991) A mouse gene related to Distal-less show a restricted expression in the developing forebrain. Nature 351, 748–751
    OpenUrlCrossRefPubMed
    1. Qiu M.,
    2. Bulfone A.,
    3. Ghattas I.,
    4. Meneses J. J.,
    5. Christensen L.,
    6. Sharpe P. T.,
    7. Presley R.,
    8. Pedersen R. A.,
    9. Rubenstein J. L. R.
    (1997) Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and-2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev. Biol 185, 165–184
    OpenUrlCrossRefPubMedWeb of Science
    1. Qui M.,
    2. Bulfone A.,
    3. Martinez S.,
    4. Meneses J. J.,
    5. Shimamura K.,
    6. Pedersen R. A.,
    7. Rubenstein J. L. R.
    (1995) Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 9, 2523–2538
    OpenUrlAbstract/FREE Full Text
    1. Rivera-Perez J. A.,
    2. Mallo M.,
    3. Gendron-Maguire M.,
    4. Gridley T.,
    5. Behringer R. R.
    (1995) goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121, 3005–3012
    OpenUrlAbstract
    1. Robertson K.,
    2. Mason I.
    (1997) The GDNF-RET signalling partnership. Trends Genet 13, 1–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Sakurai T.,
    2. Yanagisawa M.,
    3. Takuwa Y.,
    4. Miyazaki H.,
    5. Kimura S.,
    6. Goto K.,
    7. Masaki T.
    (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735
    OpenUrlCrossRefPubMedWeb of Science
    1. Satokata I.,
    2. Maas R.
    (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet 6, 348–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Schorle H.,
    2. Meier P.,
    3. Buchert M.,
    4. Jaenisch R.,
    5. Mitchell P. J.
    (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238
    OpenUrlCrossRefPubMedWeb of Science
    1. Serbedzija G. N.,
    2. Bronner-Fraser M.,
    3. Fraser S. E.
    (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307
    OpenUrlAbstract/FREE Full Text
    1. Shah N. M.,
    2. Groves A. K.,
    3. Anderson D. J.
    (1996) Alternative neural crest cell fates are instructively promoted by TGFsuperfamily members. Cell 85, 331–343
    OpenUrlCrossRefPubMedWeb of Science
    1. Shawlot W.,
    2. Behringer R. R.
    (1995) Requirement for Lim1 in head-organizer function. Nature 374, 425–430
    OpenUrlCrossRefPubMed
    1. Shprintzen R. J.,
    2. Goldberg R. B.,
    3. Lewin M. L.,
    4. Sidoti E. J.,
    5. Berkman M. D.,
    6. Argamaso R. V.,
    7. Young D.
    (1978) A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: Velo-cardio-facial syndrome. Cleft Palate J 15, 56–62
    OpenUrlPubMedWeb of Science
    1. Srivastava D.,
    2. Cserjesi P.,
    3. Olson E. N.
    (1995) A subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999
    OpenUrlAbstract/FREE Full Text
    1. Srivastava D.,
    2. Thomas T.,
    3. Lin Q.,
    4. Kirby M. L.,
    5. Brown D.,
    6. Olson E. N.
    (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet 16, 154–160
    OpenUrlCrossRefPubMedWeb of Science
    1. Trainor P. A.,
    2. Tam P. P. L.
    (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582
    OpenUrlAbstract
    1. Trainor P. A.,
    2. Tan S.-S.,
    3. Tam P. P. L.
    (1994) Cranial paraxial mesoderm: regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development 120, 2397–2408
    OpenUrlAbstract/FREE Full Text
    1. Wilson D. I.,
    2. Burn J.,
    3. Scambler P.,
    4. Goodship J.
    (1993) DiGeorge syndrome: Part of CATCH 22. J. Med. Genet 30, 852–856
    OpenUrlAbstract/FREE Full Text
    1. Yamada G.,
    2. Mansouri A.,
    3. Torres M.,
    4. Stuart E. T.,
    5. Blum M.,
    6. Schultz M.,
    7. De Robertis E. M.,
    8. Gruss P.
    (1995) Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121, 2917–2922
    OpenUrlAbstract
    1. Yanagisawa M.
    (1994) The endothelin system: a new target for therapeutic intervention. Circulation 89, 1320–1322
    OpenUrlFREE Full Text
    1. Yanagisawa H.,
    2. Yanagisawa M.,
    3. Kapur R. P.,
    4. Richardson J. A.,
    5. Williams S. C.,
    6. Clothier D. E.,
    7. de Wit D.,
    8. Emoto N.,
    9. Hammer R. E.
    (1998) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125, 825–836
    OpenUrlAbstract
    1. Zhang J.,
    2. Hagopian-Donaldson S.,
    3. Serbedzija G.,
    4. Elsemore J.,
    5. Plehn-Dujowich D.,
    6. McMahon A. P.,
    7. Flavell R. A.,
    8. Williams T.
    (1996) Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhao Q.,
    2. Behringer R. R.,
    3. de Crombrugghe B.
    (1996) Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genet 13, 275–283
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice
D.E. Clouthier, K. Hosoda, J.A. Richardson, S.C. Williams, H. Yanagisawa, T. Kuwaki, M. Kumada, R.E. Hammer, M. Yanagisawa
Development 1998 125: 813-824;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice
D.E. Clouthier, K. Hosoda, J.A. Richardson, S.C. Williams, H. Yanagisawa, T. Kuwaki, M. Kumada, R.E. Hammer, M. Yanagisawa
Development 1998 125: 813-824;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992