Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Progenitors of dorsal commissural interneurons are defined by MATH1 expression
A.W. Helms, J.E. Johnson
Development 1998 125: 919-928;
A.W. Helms
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.E. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

MATH1 is a neural-specific basic helix-loop-helix transcription factor. Members of this family of transcription factors are involved in the development of specific subsets of neurons in the developing vertebrate nervous system. Here we examine the cells expressing MATH1 with respect to their proliferative state and co-expression of cell-type-specific differentiation markers. We localize the MATH1 protein to the nucleus of cells in the dorsal neural tube and the external germinal layer (EGL) of the developing cerebellum. Using double-label immunofluorescence, we demonstrate that MATH1-expressing cells span both the proliferating and the differentiating zones within the dorsal neural tube, but within the EGL of the cerebellum are restricted to the proliferating zone. The early differentiating MATH1-expressing cells in the dorsal neural tube co-express TAG-1, DCC-1 and LH2, markers of dorsal commissural interneurons. In addition, transgenic mice with lacZ under the transcriptional control of MATH1-flanking DNA sequences express beta-galactosidase specifically in the developing nervous system, in a manner that mimics subsets of the MATH1-expression pattern, including the dorsal spinal neural tube. Expression of the MATH1/lacZ transgene persists in differentiated dorsal commissural interneurons. Taken together, we demonstrate MATH1 expression in a differentiating population of neuronal precursors in the dorsal neural tube that appear to give rise specifically to dorsal commissural interneurons.

REFERENCES

    1. Akazawa C.,
    2. Ishibashi M.,
    3. Shimizu C.,
    4. Nakanishi S.,
    5. Kageyama R.
    (1995) A mammalian helix-loop-helix factor structurally related to theproduct of the Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem 270, 8730–8738
    OpenUrlAbstract/FREE Full Text
    1. Alder J.,
    2. Cho N. K.,
    3. Hatten M. E.
    (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17, 389–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Altman J.,
    2. Bayer S. A.
    (1984) The development of the rat spinal cord. Advances in Anatomy, Embryology, and Cell Biology 85, 1–166
    OpenUrlCrossRefPubMed
    1. Barnes D.,
    2. Crosby J. L.,
    3. Jones C. M.,
    4. Wright C. V. E.,
    5. Hogan B. L. M.
    (1994) Embryonic expression of lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev. Biol 161, 168–178
    OpenUrlCrossRefPubMedWeb of Science
    1. Bartholoma A.,
    2. Nave K. A.
    (1994) NEX-1: a novel brain-specific helix-loop-helix protein with autoregulation and sustained expression in mature cortical neurons. Mech. Dev 48, 217–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Basler K.,
    2. Edlund T.,
    3. Jessell T.,
    4. Yamada T.
    (1993) Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF-family member. Cell 73, 687–702
    OpenUrlCrossRefPubMedWeb of Science
    1. Ben-Arie N.,
    2. McCall A. E.,
    3. Berkman S.,
    4. Eichele G.,
    5. Bellen H. J.,
    6. Zoghbi H. Y.
    (1996) Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Human Molecular Genetics 5, 1207–1216
    OpenUrlAbstract/FREE Full Text
    1. Campos-Ortega J. A.,
    2. Jan Y. N.
    (1991) Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annu. Rev. Neurosci 14, 399–420
    OpenUrlCrossRefPubMedWeb of Science
    1. Cau E.,
    2. Gradwohl G.,
    3. Fode C.,
    4. Guillemot F.
    (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621
    OpenUrlAbstract
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Davidson D.,
    2. Graham E.,
    3. Sime C.,
    4. Hill R.
    (1988) A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. Development 104, 305–316
    OpenUrlAbstract
    1. Davis C. A.,
    2. Joyner A. L.
    (1988) Expression patterns of the homeobox-containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev 2, 1736–1744
    OpenUrlAbstract/FREE Full Text
    1. Dodd J.,
    2. Morton S. B.,
    3. Karagogeos D.,
    4. Yamamoto M.,
    5. Jessell T. M.
    (1988) Spatial regulation of axonal glycoprotein expression of subsets of embryonic spinal neurons. Neuron 1, 105–116
    OpenUrlCrossRefPubMedWeb of Science
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L. M. J.,
    5. McMahon J. A.,
    6. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Muhr J.,
    3. Placzek M.,
    4. Lints T.,
    5. Jessell T. M.
    (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Thor S.,
    3. Edlund T.,
    4. Jessell T. M.,
    5. Yamada T.
    (1992) Early stages of motor neuron differentiation revealed by expression of the homeobox gene islet-1. Science 256, 1555–1560
    OpenUrlAbstract/FREE Full Text
    1. Fujii T.,
    2. Pichel J.,
    3. Taira M.,
    4. Tayama R.,
    5. Dawid I.,
    6. Westphal H.
    (1994) Expression pattern of the murine LIM class homeobox gene Lim-1 in the developing brain and excretory system. Dev. Dynamics 199, 73–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Furley A. J.,
    2. Morton S. B.,
    3. Manalo D.,
    4. Karagogeos D.,
    5. Dodd J.,
    6. Jessell T. M.
    (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61, 157–170
    OpenUrlCrossRefPubMedWeb of Science
    1. Gao W.-Q.,
    2. Hatten M. E.
    (1994) Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120, 1059–1070
    OpenUrlAbstract
    1. Gordon M. K.,
    2. Mumm J. S.,
    3. Davis R. A.,
    4. Holcomb J. D.,
    5. Calof A. L.
    (1995) Dynamics of MASH1 expression in vitro and in vivo suggest a non-stem cell site of MASH1 action in the olfactory receptor neuron lineage. Molecular and Cellular Neuroscience 6, 363–379
    OpenUrlCrossRefPubMedWeb of Science
    1. Gradwohl G.,
    2. Fode C.,
    3. Guillemot F.
    (1996) Restricted Expression of a novel murine atonal -related bHLH protein in undifferentiated neural precursors. Dev. Biol 180, 227–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Guillemot F.,
    2. Lo L. C.,
    3. Johnson J. E.,
    4. Auerbach A.,
    5. anderson D. J.,
    6. Joyner A. L.
    (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–76
    OpenUrlCrossRefPubMedWeb of Science
    1. Hallonet M. E. R.,
    2. Teillet M.-A.,
    3. Le Douarin N. M.
    (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108, 19–31
    OpenUrlAbstract
    1. Jan L.,
    2. Jan Y. N.
    (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830
    OpenUrlCrossRefPubMedWeb of Science
    1. Jarman A. P.,
    2. Brand M.,
    3. Jan L. Y.,
    4. Jan Y. N.
    (1993) The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors. Development 119, 19–29
    OpenUrlAbstract
    1. Jarman A. P.,
    2. Grell E. H.,
    3. Ackerman L.,
    4. Jan L. Y.,
    5. Jan Y. N.
    (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400
    OpenUrlCrossRefPubMed
    1. Jarman A. P.,
    2. Sun Y.,
    3. Jan L. Y.,
    4. Jan Y. N.
    (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121, 2019–2030
    OpenUrlAbstract
    1. Kageyama R.,
    2. Sasai Y.,
    3. Akazawa C.,
    4. Ishibashi M.,
    5. Takebayashi K.,
    6. Shimizu C.,
    7. Tomita K.,
    8. Nakanishi S.
    (1995) Regulation of mammalian neural development by helix-loop-helix transcription factors. Critical Reviews in Neurobiology 9, 177–188
    OpenUrlPubMedWeb of Science
    1. Keino-Masu K.,
    2. Masu M.,
    3. Hinck L.,
    4. Leonardo E. D.,
    5. Chan S. S.-Y.,
    6. Culotti J. G.,
    7. Tessier-Lavigne M.
    (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185
    OpenUrlCrossRefPubMedWeb of Science
    1. Leber S. M.,
    2. Sanes J. R.
    (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J. Neurosci 15, 1236–1248
    OpenUrlAbstract
    1. Lee J. E.
    (1997) Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol 7, 13–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J. E.,
    2. Hollenberg S. M.,
    3. Snider L.,
    4. Turner D. L.,
    5. Lipnick N.,
    6. Weintraub H.
    (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic-helix-loop-helix protein. Science 268, 836–844
    OpenUrlAbstract/FREE Full Text
    1. Lee M. K.,
    2. Tuttle J. B.,
    3. Rebhun L. I.,
    4. Cleveland D. N.,
    5. Frankfurter A.
    (1990) The expression and post-translational modification of a neurons-specific-tubulin isoform during chick embryogenesis. Cell. Motil. Cytoskeleton 17, 118–132
    OpenUrlCrossRefPubMedWeb of Science
    1. Liem K. F.,
    2. Tremml G.,
    3. Roelink H.,
    4. Jessell T. M.
    (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979
    OpenUrlCrossRefPubMedWeb of Science
    1. Lo L.-C.,
    2. Johnson J. E.,
    3. Wuenschell C. W.,
    4. Saito T.,
    5. Anderson D. J.
    (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially-restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5, 1524–1537
    OpenUrlAbstract/FREE Full Text
    1. Ma Q.,
    2. Kintner C.,
    3. Anderson D. J.
    (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52
    OpenUrlCrossRefPubMedWeb of Science
    1. Marti E.,
    2. Bumcrot D. A.,
    3. Takada R.,
    4. McMahon A. P.
    (1995) Requirement of the 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325
    OpenUrlCrossRefPubMed
    1. McCormick M. B.,
    2. Tamini R. M.,
    3. Snider L.,
    4. Asakura A.,
    5. Bergstorm D.,
    6. Tapscott S. J.
    (1996) neuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family. Molecular and Cellular Biology 16, 5792–5800
    OpenUrlAbstract/FREE Full Text
    1. Mercer E. H.,
    2. Hoyle G. W.,
    3. Kapur R. P.,
    4. Brinster R. L.,
    5. Palmiter R. D.
    (1991) The dopamine β-hydroxylase gene promoter directs expression of E. colilacZ to sympathetic and other neurons in transgenic mice. Neuron 7, 703–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Miale I. L.,
    2. Sidman R. L.
    (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol 47, 26–41
    OpenUrlCrossRef
    1. Pfaff S. L.,
    2. Mendelsohn M.,
    3. Stewart C. L.,
    4. Edlund T.,
    5. Jessell T. M.
    (1996) Requirement for the LIM/homeobox gene islet-1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320
    OpenUrlCrossRefPubMedWeb of Science
    1. Pieper F. R.,
    2. de Wit C. M.,
    3. Pronk A. C. J.,
    4. Kooiman P. M.,
    5. Strijker R.,
    6. Krimpenfort P. J. A.,
    7. Nuyens J. H.,
    8. de Boer H. A.
    (1992) Efficient generation of functional transgenes by homologous recombination in murine zygotes. Nucl. Acids Res 20, 1259–1264
    OpenUrlAbstract/FREE Full Text
    1. Porteus M. H.,
    2. Bulfone A.,
    3. Liu J.-K.,
    4. Puelles L.,
    5. Lo L.-C.,
    6. Rubenstein J. L. R.
    (1994) DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J. Neurosci 14, 6370–6383
    OpenUrlAbstract
    1. Roelink H.,
    2. Augsberger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Novlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T.,
    11. Dodd J.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Rosen B.,
    2. Beddington R. S. P.
    (1993) Whole mount in situ hybridization in the mouse embryo: gene expression in three dimensions. Trends in Genetics 9, 162–167
    OpenUrlCrossRefPubMedWeb of Science
    1. Shimizu C.,
    2. Akazawa C.,
    3. Nakanishi S.,
    4. Kageyama K.
    (1995) MATH-2, a mammalian helix-loop-helix factor structurally related to the product of the Drosophila proneural gene atonal, is specifically expressed in the nervous system. European J. Biochem 229, 239–.
    OpenUrlPubMedWeb of Science
    1. Silos-Santiago I.,
    2. Snider W. D.
    (1992) Development of commissural neurons in the embryonic rat spinal cord. J. Comparative Neurology 325, 514–526
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith D. B.,
    2. Johnson K. S.
    (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67, 31–40
    OpenUrlCrossRefPubMedWeb of Science
    1. Sommer L.,
    2. Ma Q.,
    3. Anderson D. J.
    (1996) neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogenity in the developing CNS and PNS. Molecular and Cellular Neuroscience 8, 221–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Sommer L.,
    2. Shah N.,
    3. Rao M.,
    4. Anderson D. J.
    (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15, 1245–1258
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanabe Y.,
    2. Roelink H.,
    3. Jessell T. M.
    (1995) Induction of motor neurons by Sonic hedgehog is independent fo floor plate differentiation. Curr. Biol 5, 651–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Verma-Kurvari S.,
    2. Savage T.,
    3. Gowan K.,
    4. Johnson J. E.
    (1996) Lineage-specific regulation of the neural differentiation gene MASH1. Dev. Biol 180, 605–617
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu Y.,
    2. Baldassare M.,
    3. Fisher P.,
    4. Rathbun G.,
    5. Oltz E. M.,
    6. Yancopoulous G. D.,
    7. Jessell T. M.,
    8. Alt F. W.
    (1993) LH2: a LIM/homeodomain gene expressed in developing lymphocytes and neural cells. Proc. Natn Acad. Sci. USA 90, 227–231
    OpenUrlAbstract/FREE Full Text
    1. Yaginuma H.,
    2. Shiga T.,
    3. Homma S.,
    4. Ishihara R.,
    5. Oppenheim R. W.
    (1990) Identification of early developing axon projections from spinal interneurons in the chick embryo with a neuron-specific-tubulin antibody: evidence for a new ‘pioneer’ pathway in the spinal cord. Development 108, 705–716
    OpenUrlAbstract/FREE Full Text
    1. Zhang L.,
    2. Goldman J. E.
    (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16, 47–54
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Progenitors of dorsal commissural interneurons are defined by MATH1 expression
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Progenitors of dorsal commissural interneurons are defined by MATH1 expression
A.W. Helms, J.E. Johnson
Development 1998 125: 919-928;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Progenitors of dorsal commissural interneurons are defined by MATH1 expression
A.W. Helms, J.E. Johnson
Development 1998 125: 919-928;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992