Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
JOURNAL ARTICLES
Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning
M. Studer, A. Gavalas, H. Marshall, L. Ariza-McNaughton, F.M. Rijli, P. Chambon, R. Krumlauf
Development 1998 125: 1025-1036;
M. Studer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Gavalas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Marshall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Ariza-McNaughton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.M. Rijli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Chambon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Krumlauf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In the developing vertebrate hindbrain Hoxa1 and Hoxb1 play important roles in patterning segmental units (rhombomeres). In this study, genetic analysis of double mutants demonstrates that both Hoxa1 and Hoxb1 participate in the establishment and maintenance of Hoxb1 expression in rhombomere 4 through auto- and para-regulatory interactions. The generation of a targeted mutation in a Hoxb1 3′ retinoic acid response element (RARE) shows that it is required for establishing early high levels of Hoxb1 expression in neural ectoderm. Double mutant analysis with this Hoxb1(3′RARE) allele and other targeted loss-of-function alleles from both Hoxa1 and Hoxb1 reveals synergy between these genes. In the absence of both genes, a territory appears in the region of r4, but the earliest r4 marker, the Eph tyrosine kinase receptor EphA2, fails to be activated. This suggests a failure to initiate rather than maintain the specification of r4 identity and defines new roles for both Hoxb1 and Hoxa1 in early patterning events in r4. Our genetic analysis shows that individual members of the vertebrate labial-related genes have multiple roles in different steps governing segmental processes in the developing hindbrain.

REFERENCES

    1. Alexandre D.,
    2. Clarke J. D.,
    3. Oxtoby E.,
    4. Yan Y.-L.,
    5. Jowett T.,
    6. Holder N.
    (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122, 735–746
    OpenUrlAbstract
    1. Ang S.-L.,
    2. Conlon R. A.,
    3. Jin O.,
    4. Rossant J.
    (1994) Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989
    OpenUrlAbstract
    1. Barrow J.,
    2. Capecchi M.
    (1996) Targeted disruption of the Hoxb2 locus in mice interferes with expression of Hoxb1 and Hoxb4. Development 122, 3817–3828
    OpenUrlAbstract
    1. Becker N.,
    2. Seitanidou T.,
    3. Murphy P.,
    4. Mattei M.-G.,
    5. Topilko P.,
    6. Nieto M. A.,
    7. Wilkinson D. G.,
    8. Charnay P.,
    9. Gilardi-Hebenstreit P.
    (1994) Several tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech. Dev 47, 3–18
    OpenUrlCrossRefPubMedWeb of Science
    1. Bienz M.
    (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10, 22–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Blumberg B.,
    2. Bolado J.,
    3. Moreno T.,
    4. Kintner C.,
    5. Evans R.,
    6. Papalopulu N.
    (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373–379
    OpenUrlAbstract
    1. Carpenter E. M.,
    2. Goddard J. M.,
    3. Chisaka O.,
    4. Manley N. R.,
    5. Capecchi M. R.
    (1993). Loss of Hoxa-1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075
    OpenUrlAbstract/FREE Full Text
    1. Chan S.-K.,
    2. Pöpperl H.,
    3. Krumlauf R.,
    4. Mann R. S.
    (1996) An extradenticle-induced conformational change in a Hox protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J 15, 2476–2487
    OpenUrlPubMedWeb of Science
    1. Chisaka O.,
    2. Musci T.,
    3. Capecchi M.
    (1992). Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355, 516–520
    OpenUrlCrossRefPubMedWeb of Science
    1. Chouinard S.,
    2. Kaufman T. C.
    (1991) Control of expression of the homeotic labial (lab) locus of Drosophila melanogaster: evidence for both positive and negative autogenous regulation. Development 113, 1267–1280
    OpenUrlAbstract
    1. Clarke J. D.,
    2. Lumsden A.
    (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118, 151–162
    OpenUrlAbstract
    1. Condie B. G.,
    2. Capecchi M. R.
    (1994) Mice with targeted disruptions in the paralogous genes Hoxa-3 and Hoxd-3 reveal synergistic interactions. Nature 370, 304–307
    OpenUrlCrossRefPubMed
    1. Conlon R. A.
    (1995) Retinoic acid and pattern formation in vertebrates. Trends Genet 11, 314–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Conlon R. A.,
    2. Rossant J.
    (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–368
    OpenUrlAbstract/FREE Full Text
    1. Davis A. P.,
    2. Witte D. P.,
    3. Hsieh-Li H. M.,
    4. Potter S. S.,
    5. Capecchi M. R.
    (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795
    OpenUrlCrossRefPubMedWeb of Science
    1. Deschamps J.,
    2. Wijgerde M.
    (1993) Two phases in the establishment of Hox expression domains. Dev. Biol 156, 473–480
    OpenUrlCrossRefPubMedWeb of Science
    1. Di Rocco G.,
    2. Mavilio F.,
    3. Zappavigna V.
    (1997) Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. EMBO J 16, 3644–3654
    OpenUrlAbstract
    1. Diederich R. J.,
    2. Merrill V. K. L.,
    3. Pultz M. A.,
    4. Kaufman T. C.
    (1989) Isolation, structure and expression of labial, a homeotic gene of the Antennapedia Complex involved in Drosophila head development. Genes Dev 3, 399–414
    OpenUrlAbstract/FREE Full Text
    1. Dolle P.,
    2. Lufkin T.,
    3. Krumlauf R.,
    4. Mark M.,
    5. Duboule D.,
    6. Chambon P.
    (1993). Local alterations of Krox-20 and Hox gene expression in the hindbrain of Hoxa-1(Hox-1.6) homozygote null mutant embryos. Proc. Nat. Acad. Sci.USA 90, 7666–7670
    OpenUrlAbstract/FREE Full Text
    1. Duboule D.
    (1993) The function of Hox genes in the morphogenesis of the vertebrate limb. Ann. Genet 36, 24–9
    OpenUrlPubMedWeb of Science
    1. Dupe V.,
    2. Davenne M.,
    3. Brocard J.,
    4. Dolle P.,
    5. Mark M.,
    6. Dierich A.,
    7. Chambon P.,
    8. Rijli F.
    (1997) In vivo functional analysis of the Hoxa1 3retinoid response element (3 RARE). Development 124, 399–410
    OpenUrlAbstract
    1. Favier B.,
    2. Rijli F. M.,
    3. Fromental-Ramain C.,
    4. Fraulob V.,
    5. Chambon P.,
    6. Dolle P.
    (1996) Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development 122, 449–460
    OpenUrlAbstract
    1. Frasch M.,
    2. Chen X.,
    3. Lufkin T.
    (1995) Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121, 957–974
    OpenUrlAbstract
    1. Fraser S.,
    2. Keynes R.,
    3. Lumsden A.
    (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435
    OpenUrlCrossRefPubMed
    1. Frohman M.,
    2. Martin G.
    (1992). Isolation and analysis of embryonic expression of Hox-4.9, a member of the murine labial-like gene family. Mech. Dev 38, 55–67
    OpenUrlCrossRefPubMedWeb of Science
    1. Frohman M. A.,
    2. Boyle M.,
    3. Martin G. R.
    (1990). Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607
    OpenUrlAbstract/FREE Full Text
    1. Goddard J.,
    2. Rossel M.,
    3. Manley N.,
    4. Capecchi M.
    (1996) Mice with targeted disruption of Hoxb1 fail to form the motor nucleus of the VIIth nerve. Development 122, 3217–3228
    OpenUrlAbstract
    1. Godsave S.,
    2. Dekker E.-J.,
    3. Holling T.,
    4. Pannese M.,
    5. Boncinelli E.,
    6. Durston A.
    (1994) Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev. Biol 166, 465–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Gould A.,
    2. Morrison A.,
    3. Sproat G.,
    4. White R.,
    5. Krumlauf R.
    (1997) Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11, 900–913
    OpenUrlAbstract/FREE Full Text
    1. Hasty P.,
    2. Ramirez-Solis R.,
    3. Krumlauf R.,
    4. Bradley A.
    (1991). Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350, 243–246
    OpenUrlCrossRefPubMed
    1. Hill J.,
    2. Clarke J. D. W.,
    3. Vargesson N.,
    4. Jowett T.,
    5. Holder N.
    (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech. Dev 50, 3–16
    OpenUrlCrossRefPubMedWeb of Science
    1. Horan G.,
    2. Ramirez-Solis R.,
    3. Featherstone M.,
    4. Wolgemuth D.,
    5. Bradley A.,
    6. Behringer R.
    (1995) Compound mutants for the paralogous Hoxa-4, Hoxb-4 and Hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 9, 1667–1677
    OpenUrlAbstract/FREE Full Text
    1. Hunt P.,
    2. Gulisano M.,
    3. Cook M.,
    4. Sham M.,
    5. Faiella A.,
    6. Wilkinson D.,
    7. Boncinelli E.,
    8. Krumlauf R.
    (1991) A distinct Hox code for the branchial region of the head. Nature 353, 861–864
    OpenUrlCrossRefPubMed
    1. Itasaki N.,
    2. Sharpe J.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Reprogramming Hox expression in the vertebrate hindbrain: Influence of paraxial mesoderm and rhombomere transposition. Neuron 16, 487–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Kessel M.
    (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10, 379–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Kolm P.,
    2. Apekin V.,
    3. Sive H.
    (1997) Xenopus hindbrain patterning requires retinoid signaling. Dev. Biol 192, 1–16
    OpenUrlCrossRefPubMed
    1. Köntges G.,
    2. Lumsden A.
    (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242
    OpenUrlAbstract
    1. Krumlauf R.
    (1993) Mouse Hox genetic functions. Curr. Opin. Genet. Dev 3, 621–625
    OpenUrlCrossRefPubMed
    1. Krumlauf R.
    (1994) Hox genes in vertebrate development. Cell 78, 191–201
    OpenUrlCrossRefPubMedWeb of Science
    1. Langston A.,
    2. Thompson J.,
    3. Gudas L.
    (1997) Retinoic acid-responsive enhancers located 3of the HoxA and the HoxB gene clusters. J. Biol. Chem 272, 2167–2175
    OpenUrlCrossRefPubMedWeb of Science
    1. Langston A. W.,
    2. Gudas L. J.
    (1992). Identification of a retinoic acid responsive enhancer 3of the murine homeobox gene Hox-1.6. Mech. Dev 38, 217–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Lufkin T.,
    2. Dierich A.,
    3. LeMeur M.,
    4. Mark M.,
    5. Chambon P.
    (1991). Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Keynes R.
    (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    OpenUrlAbstract
    1. Maconochie M.,
    2. Nonchev S.,
    3. Studer M.,
    4. Chan S.-K.,
    5. Pöpperl H.,
    6. Sham M.-H.,
    7. Mann R.,
    8. Krumlauf R.
    (1997) Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 11, 1885–1896
    OpenUrlAbstract/FREE Full Text
    1. Maconochie M. K.,
    2. Nonchev S.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Paralogous Hox Genes: Function and Regulation. Annu. Rev. Genet 30, 529–556
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Gale E.,
    3. Kostetskii I.,
    4. Zile M.
    (1996) Vitamin A deficient quail embryos half a hindbrain and other neural defects. Curr. Biol 6, 417–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Mangelsdorf D. J.,
    2. Thummel C.,
    3. Beato M.,
    4. Herrlich P.,
    5. Schutz G.,
    6. Umesono K.,
    7. Blumberg B.,
    8. Kastner P.,
    9. Mark M.,
    10. Chambon P.,
    11. Evans R. M.
    (1995) The Nuclear Receptor Superfamily: The Second Decade. Cell 83, 835–839
    OpenUrlCrossRefPubMedWeb of Science
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J.-L.,
    4. Ruberte E.,
    5. Olivo J.-C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Marshall H.,
    2. Morrison A.,
    3. Studer M.,
    4. Pöpperl P.,
    5. Krumlauf R.
    (1996) Retinoids and Hox genes. FASEB J 10, 969–978
    OpenUrlAbstract
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360, 737–741
    OpenUrlCrossRefPubMedWeb of Science
    1. Marshall H.,
    2. Studer M.,
    3. Pöpperl H.,
    4. Aparicio S.,
    5. Kuroiwa A.,
    6. Brenner S.,
    7. Krumlauf R.
    (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571
    OpenUrlCrossRefPubMed
    1. Merrill V.,
    2. Diederich R.,
    3. Turner F.,
    4. Kaufman T.
    (1989) A genetic and developmental analysis of mutations in labial, a gene necessary for proper head formation in Drosophila melanogaster. Dev. Biol 135, 376–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Moroni M.,
    2. Vigano M.,
    3. Mavilio F.
    (1993) Regulation of the human HOXD4 gene by retinoids. Mech. Dev 44, 139–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Morrison A.,
    2. Ariza-McNaughton L.,
    3. Gould A.,
    4. Featherstone M.,
    5. Krumlauf R.
    (1997) HOXD4 and regulation of the group 4 paralog genes. Development 124, 3135–3146
    OpenUrlAbstract
    1. Morrison A.,
    2. Chaudhuri C.,
    3. Ariza-McNaughton L.,
    4. Muchamore I.,
    5. Kuroiwa A.,
    6. Krumlauf R.
    (1995) Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mech. Dev 53, 47–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Morrison A.,
    2. Moroni M.,
    3. Ariza-McNaughton L.,
    4. Krumlauf R.,
    5. Mavilio F.
    (1996) In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development 122, 1895–1907
    OpenUrlAbstract
    1. Murphy P.,
    2. Davidson D. R.,
    3. Hill R. E.
    (1989) Segment-specific expression of a homeobox-containing gene in the mouse hindbrain. Nature 341, 156–159
    OpenUrlCrossRefPubMed
    1. Murphy P.,
    2. Hill R. E.
    (1991). Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111, 61–74
    OpenUrlAbstract
    1. Ogura T.,
    2. Evans R.
    (1995) Evidence for two distinct retinoic acid response pathways for Hoxb-1 gene regulation. Proc. Nat. Acad. Sci. USA 92, 392–396
    OpenUrlAbstract/FREE Full Text
    1. Ogura T.,
    2. Evans R.
    (1995) A retinoic acid-triggered cascade of Hoxb-1 gene activation. Proc. Nat. Acad. Sci. USA 92, 387–391
    OpenUrlAbstract/FREE Full Text
    1. Oroli D.,
    2. Klein R.
    (1997) The Eph receptor family: axonal guidance by contact repulsion. Trends Genet 13, 354–359
    OpenUrlCrossRefPubMedWeb of Science
    1. Papalopulu N.,
    2. Clarke J.,
    3. Bradley L.,
    4. Wilkinson D.,
    5. Krumlauf R.,
    6. Holder N.
    (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113, 1145–1159
    OpenUrlAbstract
    1. Papalopulu N.,
    2. Lovell-Badge R.,
    3. Krumlauf R.
    (1991) The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucl. Acids Res 19, 5497–5506
    OpenUrlAbstract/FREE Full Text
    1. Pöpperl H.,
    2. Bienz M.,
    3. Studer M.,
    4. Chan S.-K.,
    5. Aparicio S.,
    6. Brenner S.,
    7. Mann R. S.,
    8. Krumlauf R.
    (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent on exd/pbx. Cell 81, 1031–1042
    OpenUrlCrossRefPubMedWeb of Science
    1. Pöpperl H.,
    2. Featherstone M. S.
    (1993). Identification of a retinoic acid repsonse element upstream of the murine Hox-4.2 gene. Mol. Cell. Biol 13, 257–265
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Jessell T.
    (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5, 175–187
    OpenUrlAbstract/FREE Full Text
    1. Ruiz J.,
    2. Robertson E.
    (1994) The expression of the receptor-protein tyrosine kinase gene, eck, is highly restricted during early mouse development. Mech. Dev 46, 87–100
    OpenUrlCrossRefPubMedWeb of Science
    1. Salser S.,
    2. Kenyon C.
    (1996) A C. elegans Hox gene switches on, off, on and off again to regulate proliferation, differentiation and morphogenesis. Development 122, 1651–1661
    OpenUrlAbstract
    1. Sechrist J.,
    2. Serbedzija G. N.,
    3. Scherson T.,
    4. Fraser S. E.,
    5. Bronner-Fraser M.
    (1993) Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118, 691–703
    OpenUrlAbstract
    1. Simeone A.,
    2. Avantaggiato V.,
    3. Moroni M. C.,
    4. Mavilio F.,
    5. Arra C.,
    6. Cotelli F.,
    7. Nigro V.,
    8. D A.
    (1995) Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech. Dev 51, 83–98
    OpenUrlCrossRefPubMedWeb of Science
    1. Sive H.,
    2. Cheng P.
    (1991). Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5, 1321–1332
    OpenUrlAbstract/FREE Full Text
    1. Studer M.,
    2. Lumsden A.,
    3. Ariza-McNaughton L.,
    4. Bradley A.,
    5. Krumlauf R.
    (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634
    OpenUrlCrossRefPubMed
    1. Studer M.,
    2. Pöpperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Sundin O. H.,
    2. Eichele G.
    (1990) A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev 4, 1267–1276
    OpenUrlAbstract/FREE Full Text
    1. Whiting J.,
    2. Marshall H.,
    3. Cook M.,
    4. Krumlauf R.,
    5. Rigby P. W. J.,
    6. Stott D.,
    7. Allemann R. K.
    (1991). Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev 5, 2048–2059
    OpenUrlAbstract/FREE Full Text
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989) Segment-specific expression of a zinc finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Cook M.,
    4. Boncinelli E.,
    5. Krumlauf R.
    (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409
    OpenUrlCrossRefPubMed
    1. Zakany J.,
    2. Gerard M.,
    3. Favier B.,
    4. Potter S. S.,
    5. Duboule D.
    (1996) Functional equivalence and rescue amongst Group 11 Hox gene products in vertebral patterning. Dev. Biol 176, 325–328
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang M.,
    2. Kim H.-J.,
    3. Marshall H.,
    4. Gendron-Maguire M.,
    5. Lucas A. D.,
    6. Baron A.,
    7. Gudas L. J.,
    8. Gridley T.,
    9. Krumlauf R.,
    10. Grippo J. F.
    (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120, 2431–2442
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning
M. Studer, A. Gavalas, H. Marshall, L. Ariza-McNaughton, F.M. Rijli, P. Chambon, R. Krumlauf
Development 1998 125: 1025-1036;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning
M. Studer, A. Gavalas, H. Marshall, L. Ariza-McNaughton, F.M. Rijli, P. Chambon, R. Krumlauf
Development 1998 125: 1025-1036;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

An interview with Swathi Arur

Swathi Arur joined the team at Development as an Academic Editor in 2020. Her lab uses multidisciplinary approaches to understand female germline development and fertility. We met with her over Zoom to hear more about her life, her career and her love for C. elegans.


Jim Wells and Hanna Mikkola join our team of Editors

We are pleased to welcome James (Jim) Wells and Hanna Mikkola to our team of Editors. Jim joins us a new Academic Editor, taking over from Gordan Keller, and Hanna joins our team of Associate Editors. Find out more about their research interests and areas of expertise.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

“I’d heard of Read & Publish deals and knew that many universities, including mine, had signed up to them but I had not previously understood the benefits that these deals bring to authors who work at those universities.”

Professor Sally Lowell (University of Edinburgh) shares her experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Brandon Carpenter talks about how inherited histone methylation defines the germline versus soma decision in C. elegans. 

Sign up to join our next session:

10 March
Time: TBC
Chaired by: Thomas Lecuit

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992