Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch
A. Gavalas, M. Studer, A. Lumsden, F.M. Rijli, R. Krumlauf, P. Chambon
Development 1998 125: 1123-1136;
A. Gavalas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Studer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Lumsden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.M. Rijli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Krumlauf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Chambon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The analysis of Hoxa1 and Hoxb1 null mutants suggested that these genes are involved in distinct aspects of hindbrain segmentation and specification. Here we investigate the possible functional synergy of the two genes. The generation of Hoxa1(3′RARE)/Hoxb1(3′RARE) compound mutants resulted in mild facial motor nerve defects reminiscent of those present in the Hoxb1 null mutants. Strong genetic interactions between Hoxa1 and Hoxb1 were uncovered by introducing the Hoxb1(3′RARE) and Hoxb1 null mutations into the Hoxa1 null genetic background. Hoxa1(null)/Hoxb1(3′RARE) and Hoxa1(null)/Hoxb1(null)double homozygous embryos showed additional patterning defects in the r4-r6 region but maintained a molecularly distinct r4-like territory. Neurofilament staining and retrograde labelling of motor neurons indicated that Hoxa1 and Hoxb1 synergise in patterning the VIIth through XIth cranial nerves. The second arch expression of neural crest cell markers was abolished or dramatically reduced, suggesting a defect in this cell population. Strikingly, the second arch of the double mutant embryos involuted by 10.5 dpc and this resulted in loss of all second arch-derived elements and complete disruption of external and middle ear development. Additional defects, most notably the lack of tympanic ring, were found in first arch-derived elements, suggesting that interactions between first and second arch take place during development. Taken together, our results unveil an extensive functional synergy between Hoxa1 and Hoxb1 that was not anticipated from the phenotypes of the simple null mutants.

REFERENCES

    1. Barrow J. R.,
    2. Capecchi M. R.
    (1996) Targeted disruption of the Hob-2 locus in mice interferes with expression of Hoxb −1 and Hoxb −4. Development 122, 3817–3828
    OpenUrlAbstract
    1. Carpenter E. M.,
    2. Goddard J. M.,
    3. Chisaka O.,
    4. Manley N. R.,
    5. Capecchi M. R.
    (1993). Loss of Hox -A1 (Hox −1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075
    OpenUrlAbstract/FREE Full Text
    1. Chavrier P.,
    2. Zerial M.,
    3. Lemaire P.,
    4. Almendral J.,
    5. Bravo R.,
    6. Charnay P.
    (1988) A gene encoding a protein with zinc fingers is activated during G0/G1transition in cultured cells. EMBO J 7, 29–35
    OpenUrlPubMedWeb of Science
    1. Chisaka O.,
    2. Capecchi M. R.
    (1991). Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox −1.5 [see comments]. Nature 350, 473–479
    OpenUrlCrossRefPubMed
    1. Chisaka O.,
    2. Musci T. S.,
    3. Capecchi M. R.
    (1992). Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox −1.6 [see comments]. Nature 355, 516–520
    OpenUrlCrossRefPubMed
    1. Cooke M.,
    2. Gould A.,
    3. Brand N.,
    4. Davies J.,
    5. Strutt P.,
    6. Shaknovich R.,
    7. Licht J.,
    8. Waxman S.,
    9. Chen Z.,
    10. Gluecksohn-Waelsch S.,
    11. et al.
    (1995) Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc. Nat. Acad. Sci. USA 92, 2249–2253
    OpenUrlAbstract/FREE Full Text
    1. Cordes S. P.,
    2. Barsh G. S.
    (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034
    OpenUrlCrossRefPubMedWeb of Science
    1. Couly G. F.,
    2. Coltey P. M.,
    3. Le Douarin N. M.
    (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429
    OpenUrlAbstract
    1. Crossley P. H.,
    2. Martin G. R.
    (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451
    OpenUrlAbstract
    1. D'Amico-Martel A.,
    2. Noden D. M.
    (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat 166, 445–468
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolle P.,
    2. Lufkin T.,
    3. Krumlauf R.,
    4. Mark M.,
    5. Duboule D.,
    6. Chambon P.
    (1993) Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hox a-1 (Hox −1. 6) mutant embryos. Proc. Nat. Acad. Sci. USA 90, 7666–7670
    OpenUrlAbstract/FREE Full Text
    1. Drucker B. J.,
    2. Goldfarb M.
    (1993) Murine FGF-4 gene expression is spatially restricted within embryonic skeletal muscle and other tissues. Mech. Dev 40, 155–163
    OpenUrlCrossRefPubMedWeb of Science
    1. Dupe V.,
    2. Davenne M.,
    3. Brocard J.,
    4. Dolle P.,
    5. Mark M.,
    6. Dierich A.,
    7. Chambon P.,
    8. Rijli F. M.
    (1997) In vivo functional analysis of the Hox a-1 3retinoic acid response element (3 RARE). Development 124, 399–410
    OpenUrlAbstract
    1. Fraser S.,
    2. Keynes R.,
    3. Lumsden A.
    (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435
    OpenUrlCrossRefPubMed
    1. Frohman M. A.,
    2. Boyle M.,
    3. Martin G. R.
    (1990) Isolation of the mouse Hox −2. 9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607
    OpenUrlAbstract/FREE Full Text
    1. Frohman M. A.,
    2. Martin G. R.,
    3. Cordes S. P.,
    4. Halamek L. P.,
    5. Barsh G. S.
    (1993) Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117, 925–936
    OpenUrlAbstract
    1. Gale E.,
    2. Prince V.,
    3. Lumsden A.,
    4. Clarke J.,
    5. Holder N.,
    6. Maden M.
    (1996) Late effects of retinoic acid on neural crest and aspects of rhombomere. Development 122, 783–793
    OpenUrlAbstract
    1. Gaunt S. J.,
    2. Blum M.,
    3. De Robertis E. M.
    (1993) Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and body wall. Development 117, 769–778
    OpenUrlAbstract
    1. Gavalas A.,
    2. Davenne M.,
    3. Lumsden A.,
    4. Chambon P.,
    5. Rijli F. M.
    (1997) Control of axon guidance and rostral hindbrain patterning by Hoxa-2. Development 124, 3693–3702
    OpenUrlAbstract
    1. Gendron-Maguire M.,
    2. Mallo M.,
    3. Zhang M.,
    4. Gridley T.
    (1993) Hox a-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331
    OpenUrlCrossRefPubMedWeb of Science
    1. Goddard J. M.,
    2. Rossel M.,
    3. Manley N. R.,
    4. Capecchi M. R.
    (1996) Mice with targeted disruption of Hox b-1 fail to form the motor nucleus of the VIIth nerve. Development 122, 3217–3228
    OpenUrlAbstract
    1. Graham A.,
    2. Francis-West P.,
    3. Brickell P.,
    4. Lumsden A.
    (1994) The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684–686
    OpenUrlCrossRefPubMed
    1. Graham A.,
    2. Heyman I.,
    3. Lumsden A.
    (1993) Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain. Development 119, 233–245
    OpenUrlAbstract
    1. Guthrie S.,
    2. Lumsden A.
    (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112, 221–229
    OpenUrlAbstract
    1. Guthrie S.,
    2. Prince V.,
    3. Lumsden A.
    (1993) Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118, 527–538
    OpenUrlAbstract
    1. Heikinheimo M.,
    2. Lawshe A.,
    3. Shackleford G. M.,
    4. Wilson D. B.,
    5. MacArthur C. A.
    (1994) Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech. Dev 48, 129–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Hunt P.,
    2. Guilisano M.,
    3. Cook M.,
    4. Sham M.-H.,
    5. Faiella A.,
    6. Wilkinson D.,
    7. Boncinelli E.,
    8. Krumlauf R.
    (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353, 861–864
    OpenUrlCrossRefPubMed
    1. Kessel M.
    (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10, 379–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Keynes R.,
    2. Krumlauf R.
    (1994) Hox genes and regionalization of the nervous system. Annu. Rev. Neurosci 17, 109–132
    OpenUrlCrossRefPubMedWeb of Science
    1. Keynes R.,
    2. Lumsden A.
    (1990) Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron 4, 1–9
    OpenUrlCrossRefPubMedWeb of Science
    1. Köntges G.,
    2. Lumsden A.
    (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242
    OpenUrlAbstract
    1. Kurihara Y.,
    2. Kurihara H.,
    3. Suzuki H.,
    4. Kodama T.,
    5. Maemura K.,
    6. Nagai R.,
    7. Oda H.,
    8. Kuwaki T.,
    9. Cao W. H.,
    10. Kamada N.,
    11. et al.
    (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1 [see comments]. Nature 368, 703–710
    OpenUrlCrossRefPubMed
    1. La Rosa G. J.,
    2. Gudas L. J.
    (1988) Early retinoic acid-induced F9 teratocarcinoma stem cell gene ERA-1: alternate splicing creates transcripts for a homeobox-containing protein and one lacking the homeobox. Mol. Cell Biol 8, 3906–3917
    OpenUrlAbstract/FREE Full Text
    1. Lambert P. R.,
    2. Dodson E. E.
    (1996) Congenital malformations of the external auditory canal. Otolaryngol. Clin. North Am 29, 741–760
    OpenUrlPubMedWeb of Science
    1. Le Lievre C. S.,
    2. Le Douarin N. M.
    (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. exp. Morph 34, 125–154
    OpenUrlPubMedWeb of Science
    1. Lufkin T.,
    2. Dierich A.,
    3. Le Meur M.,
    4. Mark M.,
    5. Chambon P.
    (1991) Disruption of the Hox −1. 6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–110
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Keynes R.
    (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428
    OpenUrlCrossRefPubMed
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    OpenUrlAbstract
    1. Maconochie M.,
    2. Nonchev S.,
    3. Studer M.,
    4. Chan S.-K.,
    5. Pöpperl H.,
    6. Sham M.-H.,
    7. Mann R.,
    8. Krumlauf R.
    (1997) Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 11, 1885–1896
    OpenUrlAbstract/FREE Full Text
    1. Maden M.,
    2. Horton C.,
    3. Graham A.,
    4. Leonard L.,
    5. Pizzey J.,
    6. Siegenthaler G.,
    7. Lumsden A.,
    8. Eriksson U.
    (1992) Domains of cellular retinoic acid-binding protein I (CRABP I) expression in the hindbrain and neural crest of the mouse embryo. Mech. Dev 37, 13–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Mahmood R.,
    2. Kiefer P.,
    3. Guthrie S.,
    4. Dickson C.,
    5. Mason I.
    (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121, 1399–1410
    OpenUrlAbstract
    1. Manley N. R.,
    2. Capecchi M. R.
    (1995) The role of Hox a-3 in mouse thymus and thyroid Development. Development 121, 1989–2003
    OpenUrlAbstract
    1. Manzanares M.,
    2. Cordes S.,
    3. Kwan C.-T.,
    4. Sham M. H.,
    5. Barsh G. S.,
    6. Krumlauf R.
    (1997) Segmental regulation of Hox b-3 by kreisler. Nature 387, 191–195
    OpenUrlCrossRefPubMed
    1. Mark M.,
    2. Lohnes D.,
    3. Mendelsohn C.,
    4. Dupe V.,
    5. Vonesch J. L.,
    6. Kastner P.,
    7. Rijli F. M.,
    8. Bloch-Zupan A.,
    9. Chambon P.
    (1995) Roles of retinoic acid receptors and of Hox genes in the patterning of the teeth and of the jaw skeleton. Int. J. Dev. Biol 39, 111–121
    OpenUrlPubMed
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J. L.,
    4. Ruberte E.,
    5. Olivo J. C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hox a-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity [see comments]. Nature 360, 737–741
    OpenUrlCrossRefPubMed
    1. McKay I. J.,
    2. Muchamore I.,
    3. Krumlauf R.,
    4. Maden M.,
    5. Lumsden A.,
    6. Lewis J.
    (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120, 2199–2211
    OpenUrlAbstract
    1. Mitchell P. J.,
    2. Timmons P. M.,
    3. Hebert J. M.,
    4. Rigby P. W.,
    5. Tjian R.
    (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5, 105–10
    OpenUrlAbstract/FREE Full Text
    1. Moody S. A.,
    2. Heaton M. B.
    (1983) Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. I. Ganglion development is necessary for motoneuron migration. J. Comp. Neurol 213, 327–343
    OpenUrlCrossRefPubMedWeb of Science
    1. Murphy P.,
    2. Hill R. E.
    (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2. 9 and Hox 1. 6, during segmentation of the hindbrain. Development 111, 61–74
    OpenUrlAbstract
    1. Niederlander C.,
    2. Lumsden A.
    (1996) Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves. Development 122, 2367–2374
    OpenUrlAbstract
    1. Niswander L.,
    2. Martin G. R.
    (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–768
    OpenUrlAbstract
    1. Nittenberg R.,
    2. Patel K.,
    3. Joshi Y.,
    4. Krumlauf R.,
    5. Wilkinson D. G.,
    6. Brickell P. M.,
    7. Tickle C.,
    8. Clarke J. D.
    (1997) Cell movements, neuronal organisation and gene expression in hindbrains lacking morphological boundaries. Development 124, 2297–2306
    OpenUrlAbstract
    1. Noden D. M.
    (1988) Interactions and fates of avian craniofacial mesenchyme. Development 103, 121–140
    1. Noden D. M.
    (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol 96, 144–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Nonchev S.,
    2. Vesque C.,
    3. Maconochie M.,
    4. Seitanidou T.,
    5. Ariza-McNaughton L.,
    6. Frain M.,
    7. Marshall H.,
    8. Sham M. H.,
    9. Krumlauf R.,
    10. Charnay P.
    (1996) Segmental expression of Hox a-2 in the hindbrain is directly regulated by Krox-20. Development 122, 543–554
    OpenUrlAbstract
    1. Pöpperl H.,
    2. Bienz M.,
    3. Studer M.,
    4. Chan S.-K.,
    5. Aparicio S.,
    6. Brenner S.,
    7. Mann R. S.,
    8. Krumlauf R.
    (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent on exd/pbx. Cell 81, 1031–1042
    OpenUrlCrossRefPubMedWeb of Science
    1. Rijli F. M.,
    2. Mark M.,
    3. Lakkaraju S.,
    4. Dierich A.,
    5. Dolle P.,
    6. Chambon P.
    (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hox a-2, which acts as a selector gene. Cell 75, 1333–1349
    OpenUrlCrossRefPubMedWeb of Science
    1. Rivera-Perez J. A.,
    2. Mallo M.,
    3. Gendron-Maguire M.,
    4. Gridley T.,
    5. Behringer R. R.
    (1995) Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121, 3005–3012
    OpenUrlAbstract
    1. Ruberte E.,
    2. Friederich V.,
    3. Morriss-Kay G.,
    4. Chambon P.
    (1992) Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 115, 973–987
    OpenUrlAbstract
    1. Schneider-Maunoury S.,
    2. Seitanidou T.,
    3. Charnay P.,
    4. Lumsden A.
    (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124, 1215–1226
    OpenUrlAbstract
    1. Schneider-Maunoury S.,
    2. Topilko P.,
    3. Seitandou T.,
    4. Levi G.,
    5. Cohen-Tannoudji M.,
    6. Pournin S.,
    7. Babinet C.,
    8. Charnay P.
    (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 119–214
    1. Schörle H.,
    2. Meier P.,
    3. Buchert M.,
    4. Jaenisch R.,
    5. Mitchell P. J.
    (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238
    OpenUrlCrossRefPubMed
    1. Sechrist J.,
    2. Serbedzija G. N.,
    3. Scherson T.,
    4. Fraser S. E.,
    5. Bronner-Fraser M.
    (1993) Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118, 691–703
    OpenUrlAbstract
    1. Seitanidou T.,
    2. Schneider-Maunoury S.,
    3. Desmarquet C.,
    4. Wilkinson D. G.,
    5. Charnay P.
    (1997) Krox-20 is a key regulator of rhombomere-specific gene expression in the developing hindbrain. Mech. Dev 65, 31–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Sham M. H.,
    2. Vesque C.,
    3. Nonchev S.,
    4. Marshall H.,
    5. Frain M.,
    6. Gupta R. D.,
    7. Whiting J.,
    8. Wilkinson D.,
    9. Charnay P.,
    10. Krumlauf R.
    (1993) The zinc finger gene Krox20 regulates Hox B2 (Hox 2. 8) during hindbrain segmentation. Cell 72, 183–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Studer M.,
    2. Lumsden A.,
    3. Ariza-McNaughton L.,
    4. Bradley A.,
    5. Krumlauf R.
    (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hox b-1. Nature 384, 630–634
    OpenUrlCrossRefPubMed
    1. Studer M.,
    2. Gavalas A.,
    3. Marshall H.,
    4. Ariza-McNaughton L.,
    5. Rijli F. M.,
    6. Chambon P.,
    7. Krumlauf R.
    (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal additional roles in regulation of early hindbrain patterning. Development 125, 1025–1036
    OpenUrlAbstract
    1. Swiatek P. J.,
    2. Gridley T.
    (1993) Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev 7, 2071–2084
    OpenUrlAbstract/FREE Full Text
    1. Taneja R.,
    2. Thisse B.,
    3. Rijli F. M.,
    4. Thisse C.,
    5. Bouillet P.,
    6. Dolle P.,
    7. Chambon P.
    (1996) The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hox a-2 for rhombomere-specific expression in mouse embryos. Dev. Biol 177, 397–412
    OpenUrlCrossRefPubMed
    1. Trainor P. A.,
    2. Tam P. P.
    (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582
    OpenUrlAbstract
    1. Vesque C.,
    2. Maconochie M.,
    3. Nonchev S.,
    4. Ariza-McNaughton L.,
    5. Kuroiwa A.,
    6. Charnay P.,
    7. Krumlauf R.
    (1996) Hox b-2 transcriptional activation in rhombomeres 3 and 5 requires an evolutionarily conserved cis-acting element in addition to the Krox-20 binding site. EMBO J 15, 5383–5396
    OpenUrlPubMedWeb of Science
    1. Wilkinson D. G.
    (1995) Genetic control of segmentation in the vertebrate hindbrain. Perspect. Dev. Neurobiol 3, 29–38
    OpenUrlPubMed
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Cook M.,
    4. Boncinelli E.,
    5. Krumlauf R.
    (1989) Segmental expression of Hox −2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.,
    2. Peters G.,
    3. Dickson C.,
    4. McMahon A. P.
    (1988) Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J 7, 691–695
    OpenUrlPubMedWeb of Science
    1. Wingate R. J.,
    2. Lumsden A.
    (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122, 2143–2152
    OpenUrlAbstract
    1. Yamada G.,
    2. Mansouri A.,
    3. Torres M.,
    4. Stuart E. T.,
    5. Blum M.,
    6. Schultz M.,
    7. De Robertis E. M.,
    8. Gruss P.
    (1995) Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121, 2917–2922
    OpenUrlAbstract
    1. Zhang J.,
    2. Hagopian-Donaldson S.,
    3. Serbedzija G.,
    4. Elsemore J.,
    5. Plehn-Dujowich D.,
    6. McMahon A. P.,
    7. Flavell R. A.,
    8. Williams T.
    (1996) Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch
A. Gavalas, M. Studer, A. Lumsden, F.M. Rijli, R. Krumlauf, P. Chambon
Development 1998 125: 1123-1136;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch
A. Gavalas, M. Studer, A. Lumsden, F.M. Rijli, R. Krumlauf, P. Chambon
Development 1998 125: 1123-1136;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The people behind the papers – George Britton and Aryeh Warmflash

George and Aryeh

First author George Britton and his supervisor Aryeh Warmflash discuss their new Development paper in which they apply advanced in vitro culturing techniques to investigate embryonic ectoderm patterning.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


Primer – Principles and applications of optogenetics in developmental biology

Schematic demonstrating the approaches to controlling protein activity using optogenetics.

Protein function can be controlled by light using optogenetic techniques. In their new Primer, Stefano De Renzis and his colleagues in Heidelberg provide an overview of the most commonly used optogenetic tools and their application in developmental biology.


preLights – Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation

Sundar Naganathan

preLighter Sundar Naganathan explains his selected preprint by Vikas Trivedi, Benjamin Steventon and their co-workers on pescoids, a new in vitro model system to study early zebrafish embryogenesis.


Spotlight – Can laboratory model systems instruct human limb regeneration?

An extract from a schematic demonstrating the possible pipeline for how discovery in lab model systems can influence applications for regenerative therapies.

One of the most challenging objectives of tissue regeneration research is regrowth of a lost or amputated limb. Here, Ben Cox, Maximina Yun and Kenneth Poss outline the research avenues yet to be explored to move closer to this capstone achievement.


Articles of interest in our sister journals

Tox4 modulates cell fate reprogramming

Lotte Vanheer, Juan Song, Natalie De Geest, Adrian Janiszewski, Irene Talon, Caterina Provenzano, Taeho Oh, Joel Chappell, Vincent Pasque
Journal of Cell Science

Drosophila melanogaster: a simple system for understanding complexity

Stephanie E. Mohr, Norbert Perrimon
Disease Models & Mechanisms

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992