Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4
J.B. Hudson, S.D. Podos, K. Keith, S.L. Simpson, E.L. Ferguson
Development 1998 125: 1407-1420;
J.B. Hudson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.D. Podos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Keith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.L. Simpson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.L. Ferguson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The Transforming Growth Factor-beta superfamily member decapentaplegic (dpp) acts as an extracellular morphogen to pattern the embryonic ectoderm of the Drosophila embryo. To identify components of the dpp signaling pathway, we screened for mutations that act as dominant maternal enhancers of a weak allele of the dpp target gene zerknLllt. In this screen, we recovered new alleles of the Mothers against dpp (Mad) and Medea genes. Phenotypic analysis of the new Medea mutations indicates that Medea, like Mad, is required for both embryonic and imaginal disc patterning. Genetic analysis suggests that Medea may have two independently mutable functions in patterning the embryonic ectoderm. Complete elimination of maternal and zygotic Medea activity in the early embryo results in a ventralized phenotype identical to that of null dpp mutants, indicating that Medea is required for all dpp-dependent signaling in embryonic dorsal-ventral patterning. Injection of mRNAs encoding DPP or a constitutively activated form of the DPP receptor, Thick veins, into embryos lacking all Medea activity failed to induce formation of any dorsal cell fates, demonstrating that Medea acts downstream of the thick veins receptor. We cloned Medea and found that it encodes a protein with striking sequence similarity to human SMAD4. Moreover, injection of human SMAD4 mRNA into embryos lacking all Medea activity conferred phenotypic rescue of the dorsal-ventral pattern, demonstrating conservation of function between the two gene products.

REFERENCES

    1. Affolter M.,
    2. Nellen D.,
    3. Nussbaumer U.,
    4. Basler K.
    (1994) Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGF beta homologs during Drosophila embryogenesis. Development 120, 3105–3117
    OpenUrlAbstract
    1. Arora K.,
    2. Dai H.,
    3. Kazuko S. G.,
    4. Jamal J.,
    5. O'Connor M. B.,
    6. Letsou A.,
    7. Warrior R.
    (1995) The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81, 781–790
    OpenUrlCrossRefPubMedWeb of Science
    1. Arora K.,
    2. Nusslein-Volhard C.
    (1992) Altered mitotic domains reveal fate map changes in Drosophila embryos mutant for zygotic dorsoventral patterning genes. Development 114, 1003–1024
    OpenUrlAbstract
    1. Baker J.,
    2. Harland R.
    (1996) A novel mesoderm inducer, Madr2 functions in the activin signal transduction pathway. Genes Dev 10, 1880–1889
    OpenUrlAbstract/FREE Full Text
    1. Brown N. H.,
    2. Kafatos F. C.
    (1988) Functional cDNA libraries from Drosophila embryos. J. Mol. Biol 203, 425–437
    OpenUrlCrossRefPubMedWeb of Science
    1. Brummel T. J.,
    2. Twombly V.,
    3. Marques G.,
    4. Wrana J. L.,
    5. Newfeld S. J.,
    6. Attisano L.,
    7. Massague J.,
    8. O'Connor M. B.,
    9. Gelbart W. M.
    (1994) Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78, 251–261
    OpenUrlCrossRefPubMedWeb of Science
    1. Cavener D.,
    2. Ray S.
    (1991) Eukaryotic start and stop translation sites. Nucl. Acids Res 19, 3185–3192
    OpenUrlAbstract/FREE Full Text
    1. Chen X.,
    2. Rubock M.,
    3. Whitman M.
    (1996) A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383, 691–696
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen X.,
    2. Weisberg E.,
    3. Fridmacher V.,
    4. Watanabe M.,
    5. Naco G.,
    6. Whitman M.
    (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Chou T. B.,
    2. Perrimon N.
    (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679
    OpenUrlAbstract/FREE Full Text
    1. Dale L.,
    2. Howes G.,
    3. Price B. M.,
    4. Smith J. C.
    (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585
    OpenUrlAbstract
    1. Dearolf C. R.,
    2. Tripoulas N.,
    3. Biggs J.,
    4. Shearn A.
    (1988) Molecular consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev. Biol 129, 169–178
    OpenUrl
    1. Dosch R.,
    2. Gawantka V.,
    3. Delius H.,
    4. Blumenstock C.,
    5. Niehrs C.
    (1997) Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124, 2325–2334
    OpenUrlAbstract
    1. Eppert K.,
    2. Scherer S.,
    3. Ozcelik H.,
    4. Pirone R.,
    5. Hoodless P.,
    6. Kim H.,
    7. Tsui L.,
    8. Bapat B.,
    9. Gallinger S.,
    10. Andrulis I.,
    11. Thomsen G.,
    12. Wrana J.,
    13. Attisano L.
    (1996) MADR2 maps to 18q21 and encodes a TGF beta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferguson E. L.,
    2. Anderson K. V.
    (1992) Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71, 451–461
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferguson E. L.,
    2. Anderson K. V.
    (1992) Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 114, 583–597
    OpenUrlAbstract
    1. Graff J.,
    2. Bansal A.,
    3. Melton D.
    (1996) Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell 85, 479–487
    OpenUrlCrossRefPubMedWeb of Science
    1. Grieder N. C.,
    2. Nellen D.,
    3. Burke R.,
    4. Basler K.,
    5. Affolter M.
    (1995) Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81, 791–800
    OpenUrlCrossRefPubMedWeb of Science
    1. Hahn S.,
    2. Schutte M.,
    3. Hoque A.,
    4. Moskaluk C.,
    5. da C.,
    6. L.T.,
    7. Rozenblum E.,
    8. Weinstein C.,
    9. Fischer A.,
    10. Yeo C.,
    11. Hruban R.,
    12. Kern S.
    (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353
    OpenUrlAbstract
    1. Hammerschmidt M.,
    2. Serbedzija G. N.,
    3. McMahon A. P.
    (1996) Genetic analysis of dorsoventral pattern formation in the zebrafish:requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev 10, 2452–2461
    OpenUrlAbstract/FREE Full Text
    1. Hayashi H.,
    2. Abdollah S.,
    3. Qiu Y.,
    4. Cai J.,
    5. Xu Y. Y.,
    6. Grinnell B. W.,
    7. Richardson M. A.,
    8. Topper J. N.,
    9. Gimbrone M., Jr.,
    10. Wrana J. L.,
    11. Falb D.
    (1997) The MAD-related protein Smad7 associates with the TGF-beta receptor and functions as an antagonist of TGFbeta signaling. Cell 89, 1165–1173
    OpenUrlCrossRefPubMedWeb of Science
    1. Heldin C. H.,
    2. Miyazono K.,
    3. ten Dijke P.
    (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471
    OpenUrlCrossRefPubMedWeb of Science
    1. Holley S. A.,
    2. Neul J. L.,
    3. Attisano L.,
    4. Wrana J. L.,
    5. Sasai Y.,
    6. O'Connor M. B.,
    7. De Robertis E. M.,
    8. Ferguson E. L.
    (1996) The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Cell 86, 607–617
    OpenUrlCrossRefPubMedWeb of Science
    1. Hoodless P.,
    2. Haerry T.,
    3. Abdollah S.,
    4. Stapleton M.,
    5. O'Connor M.,
    6. Attisano L.,
    7. Wrana J.
    (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Imamura T.,
    2. Takase M.,
    3. Nishihara A.,
    4. Oeda E.,
    5. Hanai J.,
    6. Kawabata M.,
    7. Miyazono K.
    (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622–626
    OpenUrlCrossRefPubMedWeb of Science
    1. Irish V. F.,
    2. Gelbart W. M.
    (1987) The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. Genes Dev 1, 868–879
    OpenUrlAbstract/FREE Full Text
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Lapan P. M.,
    4. Wright C. V.,
    5. Hogan B. L.
    (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647
    OpenUrlAbstract
    1. Kim J.,
    2. Johnson K.,
    3. Chen H.,
    4. Carroll S.,
    5. Laughon A.
    (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Lagna G.,
    2. Hata A.,
    3. Hemmati-Brivanlou A.,
    4. Massague J.
    (1996) Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832–836
    OpenUrlCrossRefPubMedWeb of Science
    1. Letsou A.,
    2. Arora K.,
    3. Wrana J. L.,
    4. Simin K.,
    5. Twombly V.,
    6. Jamal J.,
    7. Staehling-Hampton K.,
    8. Hoffmann F. M.,
    9. Gelbart W. M.,
    10. Massague J.,
    11. O'Connor M. B.
    (1995) Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80, 899–908
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu F.,
    2. Hata A.,
    3. Baker J.,
    4. Doody J.,
    5. Carcamo J.,
    6. Harland R.,
    7. Massague J.
    (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623
    OpenUrlCrossRefPubMed
    1. Liu X.,
    2. Sun Y.,
    3. Constantinescu S.,
    4. Karam E.,
    5. Weinberg R.,
    6. Lodish H.
    (1997) Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl. Acad. Sci. USA 94, 10669–10674
    OpenUrlAbstract/FREE Full Text
    1. Locke J.,
    2. Kotarski M. A.,
    3. Tartof K. D.
    (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120, 181–198
    OpenUrlAbstract/FREE Full Text
    1. Macias-Silva M.,
    2. Abdollah S.,
    3. Hoodless P.,
    4. Pirone R.,
    5. Attisano L.,
    6. Wrana J.
    (1996) MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224
    OpenUrlCrossRefPubMedWeb of Science
    1. Massague J.
    (1996) TGF-beta signaling: receptors, transducers, and Mad proteins. Cell 85, 947–950
    OpenUrlCrossRefPubMedWeb of Science
    1. Mullins M. C.,
    2. Hammerschmidt M.,
    3. Kane D. A.,
    4. Odenthal J.,
    5. Brand M.,
    6. van Eeden F. J.,
    7. Furutani-Seiki M.,
    8. Granato M.,
    9. Haffter P.,
    10. Heisenberg C. P.,
    11. Jiang Y. J.,
    12. Kelsh R. N.,
    13. Nusslein-Volhard C.
    (1996) Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93
    OpenUrlAbstract/FREE Full Text
    1. Nakao A.,
    2. Afrakhte M.,
    3. Moren A.,
    4. Nakayama T.,
    5. Christian J.,
    6. Heuchel R.,
    7. Itoh S.,
    8. Kawabata N.,
    9. Heldin N.,
    10. Heldin C.,
    11. tenDijke P.
    (1997) Identification of Smad7, a TGF beta-inducible antagonist of TGF-beta signalling. Nature 389, 631–635
    OpenUrlCrossRefPubMedWeb of Science
    1. Nellen D.,
    2. Affolter M.,
    3. Basler K.
    (1994) Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78, 225–237
    OpenUrlCrossRefPubMedWeb of Science
    1. Newfeld S.,
    2. Chartoff E.,
    3. Graff J.,
    4. Melton D.,
    5. Gelbart W.
    (1996) Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 122, 2099–2108
    OpenUrlAbstract
    1. Newfeld S.,
    2. Mehra A.,
    3. Singer M.,
    4. Wrana J.,
    5. Attisano L.,
    6. Gelbart W.
    (1997) Mothers against dpp participates in a DPP/TGF-beta responsive serine-threonine kinase signal transduction cascade. Development 124, 3167–3176
    OpenUrlAbstract
    1. Penton A.,
    2. Chen Y.,
    3. Staehling-Hampton K.,
    4. Wrana J. L.,
    5. Attisano L.,
    6. Szidonya J.,
    7. Cassill J. A.,
    8. Massague J.,
    9. Hoffmann F. M.
    (1994) Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78, 239–250
    OpenUrlCrossRefPubMedWeb of Science
    1. Raftery L. A.,
    2. Twombly V.,
    3. Wharton K.,
    4. Gelbart W. M.
    (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254
    OpenUrlAbstract/FREE Full Text
    1. Ruberte E.,
    2. Marty T.,
    3. Nellen D.,
    4. Affolter M.,
    5. Basler K.
    (1995) An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell 80, 889–897
    OpenUrlCrossRefPubMedWeb of Science
    1. Rushlow C.,
    2. Frasch M.,
    3. Doyle H.,
    4. Levine M.
    (1987) Maternal regulation of zerknullt: a homoeobox gene controlling differentiation of dorsal tissues in Drosophila. Nature 330, 583–586
    OpenUrlCrossRefPubMedWeb of Science
    1. Rushlow C.,
    2. Levine M.
    (1990) Role of the zerknullt gene in dorsal-ventral pattern formation in Drosophila. Adv. Genet 27, 277–307
    OpenUrlPubMed
    1. Savage C.,
    2. Das P.,
    3. Finelli A.,
    4. Townsend S.,
    5. Sun C.,
    6. Baird S.,
    7. Padgett R.
    (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc. Natl. Acad. Sci. USA 93, 790–794
    OpenUrlAbstract/FREE Full Text
    1. Schmucker D.,
    2. Taubert H.,
    3. Jackle H.
    (1992) Formation of the Drosophila larval photoreceptor organ and its neuronal differentiation require continuous Kruppel gene activity. Neuron 9, 1025–1039
    OpenUrlCrossRefPubMedWeb of Science
    1. Schutte M.,
    2. Hruban R. H.,
    3. Hedrick L.,
    4. Cho K. R.,
    5. Nadasdy G. M.,
    6. Weinstein C. L.,
    7. Bova G. S.,
    8. Isaacs W. B.,
    9. Cairns P.,
    10. Nawroz H.,
    11. Sidransky D.,
    12. Casero R., Jr.,
    13. Meltzer P. S.,
    14. Hahn S. A.,
    15. Kern S. E.
    (1996) DPC4 gene in various tumor types. Cancer Res 56, 2527–2530
    OpenUrlAbstract/FREE Full Text
    1. Sekelsky J. J.,
    2. Newfeld S. J.,
    3. Raftery L. A.,
    4. Chartoff E. H.,
    5. Gelbart W. M.
    (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358
    OpenUrlAbstract/FREE Full Text
    1. Shi Y.,
    2. Hata A.,
    3. Lo R.,
    4. Massague J.,
    5. Pavletich N.
    (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Spencer F. A.,
    2. Hoffmann F. M.,
    3. Gelbart W. M.
    (1982) Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28, 451–461
    OpenUrlCrossRefPubMedWeb of Science
    1. St. Johnston R. D.,
    2. Gelbart W. M.
    (1987) Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. EMBO J 6, 2785–2791
    OpenUrlPubMedWeb of Science
    1. Suzuki A.,
    2. Chang C.,
    3. Yingling J.,
    4. Wang X.,
    5. Hemmati-Brivanlou A.
    (1997) Smad5 induces ventral fates in Xenopus embryo. Dev. Biol 184, 402–405
    OpenUrlCrossRefPubMedWeb of Science
    1. Tamkun J. W.,
    2. Deuring R.,
    3. Scott M. P.,
    4. Kissinger M.,
    5. Pattatucci A. M.,
    6. Kaufman T. C.,
    7. Kennison J. A.
    (1992) brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572
    OpenUrlCrossRefPubMedWeb of Science
    1. Terracol R.,
    2. Lengyel J. A.
    (1994) The thick veins gene of Drosophila is required for dorsoventral polarity of the embryo. Genetics 138, 165–178
    OpenUrlAbstract/FREE Full Text
    1. Thiagalingam S.,
    2. Lengauer C.,
    3. Leach F. S.,
    4. Schutte M.,
    5. Hahn S. A.,
    6. Overhauser J.,
    7. Willson J. K.,
    8. Markowitz S.,
    9. Hamilton S. R.,
    10. Kern S. E.,
    11. Kinzler K. W.,
    12. Vogelstein B.
    (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genetics 13, 343–346
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomsen G.
    (1996) Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 122, 2359–2366
    OpenUrlAbstract
    1. Tsuneizumi K.,
    2. Nakayama T.,
    3. Kamoshida Y.,
    4. Kornberg T.,
    5. Christian J.,
    6. Tabata T.
    (1997) Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627–631
    OpenUrlCrossRefPubMedWeb of Science
    1. Twombly V.,
    2. Blackman R. K.,
    3. Jin H.,
    4. Graff J. M.,
    5. Padgett R. W.,
    6. Gelbart W. M.
    (1996) The TGF-signaling pathway is essential for Drosophila oogenesis. Development 122, 1555–1565
    OpenUrlAbstract
    1. Wakimoto B. T.,
    2. Turner F. R.,
    3. Kaufman T. C.
    (1984) Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev. Biol 102, 147–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Wharton K. A.,
    2. Ray R. P.,
    3. Gelbart W. M.
    (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822
    OpenUrlAbstract
    1. Wilson P. A.,
    2. Lagna G.,
    3. Suzuki A.,
    4. Hemmati-Brivanlou A.
    (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184
    OpenUrlAbstract
    1. Wisotzkey R. G.,
    2. Mehra A.,
    3. Sutherland D. J.,
    4. Dobens L. L.,
    5. Liu X.,
    6. Dohrmann C.,
    7. Attisano L.,
    8. Raftery L. A.
    (1998) Medea is a Drosophila Smad4 homolog that is differentially required to potentiate Dpp responses. Development 125, 1433–1445
    OpenUrlAbstract
    1. Wrana J. L.,
    2. Attisano L.,
    3. Wieser R.,
    4. Ventura F.,
    5. Massague J.
    (1994) Mechanism of activation of the TGF-beta receptor. Nature 370, 341–347
    OpenUrlCrossRefPubMedWeb of Science
    1. Xie T.,
    2. Finelli A. L.,
    3. Padgett R. W.
    (1994) The Drosophila saxophone gene: a serine-threonine kinase receptor of the TGF-beta superfamily. Science 263, 1756–1759
    OpenUrlAbstract/FREE Full Text
    1. Xiong W. C.,
    2. Montell C.
    (1993) tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev 7, 1085–1096
    OpenUrlAbstract/FREE Full Text
    1. Yingling J. M.,
    2. Datto M. B.,
    3. Wong C.,
    4. Frederick J. P.,
    5. Liberati N. T.,
    6. Wang X. F.
    (1997) Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol. Cell. Biol 17, 7019–7028
    OpenUrlAbstract/FREE Full Text
    1. Zhang Y.,
    2. Feng X.,
    3. We R.,
    4. Derynck R.
    (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383, 168–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang Y.,
    2. Musci T.,
    3. Derynck R.
    (1997) The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Current Biol 7, 270–276
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4
J.B. Hudson, S.D. Podos, K. Keith, S.L. Simpson, E.L. Ferguson
Development 1998 125: 1407-1420;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4
J.B. Hudson, S.D. Podos, K. Keith, S.L. Simpson, E.L. Ferguson
Development 1998 125: 1407-1420;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992