Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses
R.G. Wisotzkey, A. Mehra, D.J. Sutherland, L.L. Dobens, X. Liu, C. Dohrmann, L. Attisano, L.A. Raftery
Development 1998 125: 1433-1445;
R.G. Wisotzkey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Mehra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.J. Sutherland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.L. Dobens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X. Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Dohrmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Attisano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.A. Raftery
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mothers against dpp (Mad) mediates Decapentaplegic (DPP) signaling throughout Drosophila development. Here we demonstrate that Medea encodes a MAD-related protein that functions in DPP signaling. MEDEA is most similar to mammalian Smad4 and forms heteromeric complexes with MAD. Like dpp, Medea is essential for embryonic dorsal/ventral patterning. However, Mad is essential in the germline for oogenesis whereas Medea is dispensable. In the wing primordium, loss of Medea most severely affects regions receiving low DPP signal. MEDEA is localized in the cytoplasm, is not regulated by phosphorylation, and requires physical association with MAD for nuclear translocation. Furthermore, inactivating MEDEA mutations prevent nuclear translocation either by preventing interaction with MAD or by trapping MAD/MEDEA complexes in the cytosol. Thus MAD-mediated nuclear translocation is essential for MEDEA function. Together these data show that, while MAD is essential for mediating all DPP signals, heteromeric MAD/MEDEA complexes function to modify or enhance DPP responses. We propose that this provides a general model for Smad4/MEDEA function in signaling by the TGF-beta family.

REFERENCES

    1. Abdollah S.,
    2. Macias-Silva M.,
    3. Tsukazaki T.,
    4. Hayashi H.,
    5. Attisano L.,
    6. Wrana J. L.
    (1997) TRI phosphorylation of Smad2 on Ser 465 and 467 is required for Smad2/Smad4 complex formation and signalling. J. Biol. Chem 272, 27678–27685
    OpenUrlAbstract/FREE Full Text
    1. Bienz M.
    (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10, 22–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Brand A. H.,
    2. Perrimon N.
    (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415
    OpenUrlAbstract
    1. Brown N. H.,
    2. Kafatos F. C.
    (1988) Functional cDNA libraries from Drosophila embryos. J. Mol. Biol 203, 425–437
    OpenUrlCrossRefPubMedWeb of Science
    1. Burke R.,
    2. Basler K.
    (1996) Dpp receptors are autonomously required for cell proliferation in the entire developing Drosophila wing. Development 122, 2261–2269
    OpenUrlAbstract
    1. Cavener D. R.,
    2. Ray S. C.
    (1991) Eukaryotic start and stop translation sites. Nucl. Acids Res 19, 3185–3192
    OpenUrlAbstract/FREE Full Text
    1. Chen X.,
    2. Rubock M. J.,
    3. Whitman M.
    (1996) A transcriptional partner for MAD proteins in TGF-signaling. Nature 383, 691–696
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen X.,
    2. Weisberg E.,
    3. Fridmacher V.,
    4. Watanabe M.,
    5. Naco G.,
    6. Whitman M.
    (1997) SMAD4 and FAST-1 in the assemby of activin-responsive factor. Nature 389, 85–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Chou T.-B.,
    2. Noll E.,
    3. Perrimon N.
    (1993) Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369
    OpenUrlAbstract
    1. de Celis J. F.,
    2. Barrio R.,
    3. Kafatos F. C.
    (1996) A gene complex acting downstream of dpp in Drosophila wing morphogenesis. Nature 381, 421–424
    OpenUrlCrossRefPubMed
    1. Derynk R.,
    2. Zhang Y.
    (1996) The Mad way to do it. Curr. Biol 6, 1226–1229
    OpenUrlCrossRefPubMedWeb of Science
    1. FlyBase
    (1994) The Drosophila genetic database. Nucl. Acids Res 22, 3456–3458
    OpenUrlAbstract/FREE Full Text
    1. Hahn S. A.,
    2. Schutte M.,
    3. Hoque A. T. M. S.,
    4. Moskaluk C. A.,
    5. da Costa L. T.,
    6. Rozenblum E.,
    7. Weinstein C. L.,
    8. Fischer A.,
    9. Yeo C. J.,
    10. Hruban R. H.,
    11. Kern S. E.
    (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–356
    OpenUrlAbstract
    1. Harrison S. D.,
    2. Travers A. A.
    (1990) The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J 9, 207–216
    OpenUrlPubMedWeb of Science
    1. Heldin C.-H.,
    2. Miyazono K.,
    3. ten Dijke P.
    (1997) TGF-signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–467
    OpenUrlCrossRefPubMedWeb of Science
    1. Higgins D. G.,
    2. Bleasby A. J.,
    3. Fuchs R.
    (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci 8, 189–191
    OpenUrlAbstract/FREE Full Text
    1. Hogan B. L. M.
    (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10, 1580–1594
    OpenUrlFREE Full Text
    1. Hoodless P. A.,
    2. Haerry T.,
    3. Abdollah S.,
    4. Stapleton M.,
    5. O'Connor M. B.,
    6. Attisano L.,
    7. Wrana J. L.
    (1996) MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500
    OpenUrlCrossRefPubMedWeb of Science
    1. Irish V. F.,
    2. Gelbart W. M.
    (1987) The decapentaplegic gene is required for dorsal/ventral patterning of the Drosophila embryo. Genes Dev 1, 868–79
    OpenUrlAbstract/FREE Full Text
    1. Irvine K. D.,
    2. Helfand S. L.,
    3. Hogness D. S.
    (1991) The large upstream control region of the Drosophila homeotic gene Ultrabithorax. Development 111, 407–424
    OpenUrlAbstract
    1. Jackson P. D.,
    2. Hoffmann F. M.
    (1994) Embryonic expression patterns of the Drosophila decapentaplegic gene: separate regulatory elements control blastoderm expression and lateral ectodermal expression. Dev. Dynamics 199, 28–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Kim J.,
    2. Johnson K.,
    3. Chen H.-J.,
    4. Carroll S.,
    5. Laughon A.
    (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304–307
    OpenUrlCrossRefPubMedWeb of Science
    1. Kingsley D. M.
    (1994) The TGF-superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133–146
    OpenUrlFREE Full Text
    1. Kretzschmer M.,
    2. Liu F.,
    3. Hata A.,
    4. Doody J.,
    5. Massague J.
    (1997) The TGF-family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11, 984–995
    OpenUrlAbstract/FREE Full Text
    1. Lagna G.,
    2. Hata A.,
    3. Hemmati-Brivanlou A.,
    4. Massague J.
    (1996) Partnership between DPC4 and SMAD proteins in TGF-signaling pathways. Nature 383, 832–836
    OpenUrlCrossRefPubMedWeb of Science
    1. Lecuit T.,
    2. Brook W.,
    3. Ng M.,
    4. Calleja M.,
    5. Sun H.,
    6. Cohen S.
    (1996) Two distinct mechanisms for long-range patterning by decapentaplegic in the Drosophila wing. Nature 381, 387–393
    OpenUrlCrossRefPubMed
    1. Letsou A.,
    2. Arora K.,
    3. Wrana J. L.,
    4. Simin K.,
    5. Twombly V.,
    6. Jamal J.,
    7. Staehling-Hampton K.,
    8. Hoffmann F. M.,
    9. Gelbart W. M.,
    10. Massague J.,
    11. O'Connor M. B.
    (1995) Dpp signaling in Drosophila is mediated by the punt gene product: a dual ligand binding type II receptor of the TGF-receptor family. Cell 80, 899–908
    OpenUrlCrossRefPubMedWeb of Science
    1. Lewis E. B.,
    2. Bacher F.
    (1968) Method for feeding ethyl-methane sulfonate (EMS) to Drosophila males. Dros. Inform. Serv 43, 193–.
    OpenUrl
    1. Liu F.,
    2. Hata A.,
    3. Baker J. C.,
    4. Doody J.,
    5. Cárcamo J.,
    6. Harland R. M.,
    7. Massague J.
    (1996) A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623
    OpenUrlCrossRefPubMed
    1. Liu F.,
    2. Pouponnot G.,
    3. Massague J.
    (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGF-inducible transcriptional complexes. Genes Dev 11, 3157–3167
    OpenUrlAbstract/FREE Full Text
    1. Macías-Silva M.,
    2. Abdollah S.,
    3. Hoodless P. A.,
    4. Pirone R.,
    5. Attisano L.,
    6. Wrana J. L.
    (1996) MADR2 is a substrate of the TGF-receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224
    OpenUrlCrossRefPubMedWeb of Science
    1. Masucci J. D.,
    2. Miltenberger R. J.,
    3. Hoffmann F. M.
    (1990) Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3′ cis -regulatory elements. Genes Dev 4, 2011–2023
    OpenUrlAbstract/FREE Full Text
    1. Morita T.,
    2. Sato T.,
    3. Nyunoya H.,
    4. Tsujimoto A.,
    5. Takahara J.,
    6. Irino S.,
    7. Shimotohno K.
    (1993) Isolation of a cDNA clone encoding DNA-binding protein (TAXREB107) that binds specifically to domain C of the tax-responsive element in the long-terminal repeat of human T-cell leukemia virus type I. AIDS Res. Hum. Retroviruses 9, 115–121
    OpenUrlPubMed
    1. Nakao A.,
    2. Röijer E.,
    3. Imamura T.,
    4. Souchelnytskyi S.,
    5. Stenman G.,
    6. Heldin C.-H.,
    7. ten Dijke P.
    (1997) Identification of Smad2, a human Mad-related protein in the transforming growth factor-signaling pathway. J. Biol. Chem 272, 2896–2900
    OpenUrlAbstract/FREE Full Text
    1. Nellen D.,
    2. Burke R.,
    3. Struhl G.,
    4. Basler K.
    (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368
    OpenUrlCrossRefPubMedWeb of Science
    1. Newfeld S. J.,
    2. Chartoff E. H.,
    3. Graff J. M.,
    4. Melton D. A.,
    5. Gelbart W. M.
    (1996) Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-responsive cells. Development 122, 2099–2108
    OpenUrlAbstract
    1. Newfeld S. J.,
    2. Mehra A.,
    3. Singer M. A.,
    4. Wrana J. L.,
    5. Attisano L.,
    6. Gelbart W. M.
    (1997) Mothers against dpp participates in a DPP/TGF-responsive serine-threonine kinase signal transduction cascade. Development 124, 3167–3176
    OpenUrlAbstract
    1. Padgett R. W.,
    2. Wozney J. M.,
    3. Gelbart W. M.
    (1993) Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 90, 2905–2909
    OpenUrlAbstract/FREE Full Text
    1. Posakony L. G.,
    2. Raftery L. A.,
    3. Gelbart W. M.
    (1991) Wing formation in Drosophila melanogaster requires decapentaplegic gene function along the anterior-posterior compartment boundary. Mech. Dev 33, 69–82
    OpenUrl
    1. Raftery L. A.,
    2. Sanicola M.,
    3. Blackman R. K.,
    4. Gelbart W. M.
    (1991) The relationship of decapentaplegic and engrailed: do these gene mark the anterior-posterior compartment boundary?. Development 113, 27–33
    OpenUrlAbstract
    1. Ruberte E.,
    2. Marty T.,
    3. Nellen D.,
    4. Affolter M.,
    5. Basler K.
    (1995) An absolute requirement for both the type II and type I receptors, Punt and Thick Veins, for Dpp signaling in vivo. Cell 80, 889–897
    OpenUrlCrossRefPubMedWeb of Science
    1. Savage C. P. D.,
    2. Finelli A. L.,
    3. Townsend S. R.,
    4. Sun C.-Y.,
    5. Baird S.,
    6. Padgett R. W.
    (1996) The C. eleganssma-2, sma-3, and sma-4 genes define a novel conserved family of TGF-pathway components. Proc. Natl. Acad. Sci. USA 93, 790–794
    OpenUrlAbstract/FREE Full Text
    1. Siden-Kiamos I.,
    2. Saunders R. D. C.,
    3. Spanos L.,
    4. Majerus T.,
    5. Trenear J.,
    6. Savakis C.,
    7. Louis C.,
    8. Glover D. M.,
    9. Ashburner M.,
    10. Kafatos F. C.
    (1990) Towards a physical map of the Drosophila melanogaster genome: Mapping of cosmid clones within defined genomic divisions. Nucl. Acids Res 18, 6261–6270
    OpenUrlAbstract/FREE Full Text
    1. Simon J. A.,
    2. Sutton C. A.,
    3. Lobell R. B.,
    4. Galser R. L.,
    5. Lis J. T.
    (1985) Determinants of heat shock induced chromosome puffing. Cell 40, 805–817
    OpenUrlCrossRefPubMedWeb of Science
    1. Singer M. A.,
    2. Penton A.,
    3. Twombly V.,
    4. Hoffmann F. M.,
    5. Gelbart W. M.
    (1997) Signaling through both type I DPP receptors is required for anterior-posterior patterning of the entire Drosophila wing. Development 134, 79–89
    OpenUrl
    1. Smoller D. A.,
    2. Petrov D.,
    3. Hartl D. L.
    (1991) Characterization of bacteriophage P1 library containing inserts of Drosophila DNA of 75–100 kilobase pairs. Chromosoma 100, 487–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Souchelnytskyi S.,
    2. Tamaki K.,
    3. Engström U.,
    4. Wernstedt C.,
    5. ten Dijke P.,
    6. Heldin C. H.
    (1997) Phosphorylation of Ser465 and Ser467 in the Cterminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-signaling. J. Biol. Chem 272, 28107–28115
    OpenUrlAbstract/FREE Full Text
    1. Staehling-Hampton K.,
    2. Hoffmann F. M.
    (1994) Ectopic decapentaplegic in the Drosophila midgut alters the expression of five homeotic genes, dpp, and wingless, causing specific morphological defects. Dev. Biol 164, 502–12
    OpenUrlCrossRefPubMedWeb of Science
    1. Staehling-Hampton K.,
    2. Hoffmann F. M.,
    3. Baylies M. K.,
    4. Rushton E.,
    5. Bate M.
    (1994) dpp induces mesodermal gene expression in Drosophila. Nature 372, 783–86
    OpenUrlCrossRefPubMedWeb of Science
    1. Steller H.,
    2. Pirotta V.
    (1986) P transposons controlled by the heat shock promoter. Mol. Cell. Biol 6, 1640–1649
    OpenUrlAbstract/FREE Full Text
    1. Stroumbakis N. D.,
    2. Li Z.,
    3. Tolias P. P.
    (1994) RNA-and single-stranded DNA-binding (SSB) proteins expressed during Drosophila melanogaster oogenesis: a homolog of bacterial and eukaryotic mitochondrial SSBs. Gene 143, 171–177
    OpenUrlCrossRefPubMedWeb of Science
    1. Tamkun J. W.,
    2. Deuring R.,
    3. Scott M. P.,
    4. Kissinger M.,
    5. Pattatucci A. M.,
    6. Kaufman T. C.,
    7. Kennison J. A.
    (1992) brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SW12. Cell 68, 561–572
    OpenUrlCrossRefPubMedWeb of Science
    1. Twombly V.,
    2. Blackman R. K.,
    3. Jin H.,
    4. Padgett R. W.,
    5. Gelbart W. M.
    (1996) The TGF-signaling pathway is required in Drosophila oogenesis. Development 122, 1555–1565
    OpenUrlAbstract
    1. Vincent J.-P.,
    2. Girdham C. H.,
    3. O'Farrell P. H.
    (1994) A cell-autonomous, ubiquitous marker for the analysis of Drosophila genetic mosaics. Dev. Biol 164, 328–331
    OpenUrlCrossRefPubMedWeb of Science
    1. Wharton K. A.,
    2. Ray R.,
    3. Gelbart W. M.
    (1993) An activity gradient of decapentaplegic is required for dorsal-ventral patterning in the Drosophila embryo. Development 117, 807–822
    OpenUrlAbstract
    1. Wiersdorff V.,
    2. Lecuit T.,
    3. Cohen S. M.,
    4. Mlodzik M.
    (1996) Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122, 2153–2162
    OpenUrlAbstract
    1. Xu T.,
    2. Rubin G. M.
    (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237
    OpenUrlAbstract
    1. Zhang Y.,
    2. Musci T.,
    3. Derynk R.
    (1997) The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr. Biol 7, 270–276
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses
R.G. Wisotzkey, A. Mehra, D.J. Sutherland, L.L. Dobens, X. Liu, C. Dohrmann, L. Attisano, L.A. Raftery
Development 1998 125: 1433-1445;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses
R.G. Wisotzkey, A. Mehra, D.J. Sutherland, L.L. Dobens, X. Liu, C. Dohrmann, L. Attisano, L.A. Raftery
Development 1998 125: 1433-1445;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992