Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects
J.J. Tilly, D.W. Allen, T. Jack
Development 1998 125: 1647-1657;
J.J. Tilly
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.W. Allen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Jack
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

APETALA3 is a MADS box gene required for normal development of the petals and stamens in the Arabidopsis flower. Studies in yeast, mammals and plants demonstrate that MADS domain transcription factors bind with high affinity to a consensus sequence called the CArG box. The APETALA3 promoter contains three close matches to the consensus CArG box sequence. To gain insights into the APETALA3 regulatory circuitry, we have analyzed the APETALA3 promoter using AP3::uidA(GUS) fusions. 496 base pairs of APETALA3 promoter sequence 5′ to the transcriptional start directs GUS activity in the same temporal and spatial expression pattern as the APETALA3 RNA and protein in wild-type flowers. A synthetic promoter consisting of three tandem repeats of a 143 base pair sequence directs reporter gene activity exclusively to petals and stamens in the flower. We have analyzed the role of the CArG boxes by site-specific mutagenesis and find that the three CArG boxes mediate discrete regulatory effects. Mutations in CArG1 result in a decrease in reporter expression suggesting that CArG1 is the binding site for a positively acting factor or factors. Mutations in CArG2 result in a decrease in reporter expression in petals, but the expression pattern in stamens is unchanged. By contrast, mutations in CArG3 result in an increase in the level of reporter gene activity during early floral stages suggesting that CArG3 is the binding site for a negatively acting factor.

REFERENCES

    1. Benfey P. N.,
    2. Chua N.-H.
    (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966
    OpenUrlAbstract/FREE Full Text
    1. Davies B.,
    2. Egea-Cortines M.,
    3. de Andrade Silva E.,
    4. Saedler H.,
    5. Sommer H.
    (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J 16, 4330–4343
    OpenUrl
    1. Deng W. P.,
    2. Nickoloff J. A.
    (1992) Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem 200, 81–96
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolan J. W.,
    2. Fields S.
    (1991) Cell-type-specific transcription in yeast. Biochim. Biophys. Acta 1088, 155–169
    OpenUrlPubMedWeb of Science
    1. Flanagan C. A.,
    2. Ma H.
    (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol 26, 581–595
    OpenUrlCrossRefPubMedWeb of Science
    1. Goto K.,
    2. Meyerowitz E. M.
    (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8, 1548–1560
    OpenUrlAbstract/FREE Full Text
    1. Gustafson-Brown C.,
    2. Savidge B.,
    3. Yanofsky M. F.
    (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76, 131–143
    OpenUrlCrossRefPubMedWeb of Science
    1. Hill T. A.,
    2. Day C. D.,
    3. Zondlo S. C.,
    4. Thackeray A.,
    5. Irish V. F.
    (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125, 1711–1721
    OpenUrlAbstract
    1. Huang H.,
    2. Mizukami Y.,
    3. Ma H.
    (1993) Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res 21, 4769–4776
    OpenUrlAbstract/FREE Full Text
    1. Huang H.,
    2. Tudor M.,
    3. Weiss C. A.,
    4. Hu Y.,
    5. Ma H.
    (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol 28, 549–567
    OpenUrlCrossRefPubMedWeb of Science
    1. Huang H.,
    2. Tudor M.,
    3. Su T.,
    4. Zhang Y.,
    5. Hu Y.,
    6. Ma H.
    (1996) DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81–94
    OpenUrlAbstract/FREE Full Text
    1. Ingram G. C.,
    2. Goodrich J.,
    3. Wilkinson M. D.,
    4. Simon R.,
    5. Haughn G. W.,
    6. Coen E. S.
    (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7, 1501–1510
    OpenUrlAbstract/FREE Full Text
    1. Ip Y. T.,
    2. Park R. E.,
    3. Kosman D.,
    4. Bier E.,
    5. Levine M.
    (1992) The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev 6, 1728–1739
    OpenUrlAbstract/FREE Full Text
    1. Irish V.,
    2. Yamamoto Y. T.
    (1995) Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum. Plant Cell 7, 1635–1644
    OpenUrlAbstract/FREE Full Text
    1. Jack T.,
    2. Brockman L. L.,
    3. Meyerowitz E. M.
    (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683–697
    OpenUrlCrossRefPubMedWeb of Science
    1. Jack T.,
    2. Fox G. L.,
    3. Meyerowitz E. M.
    (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76, 703–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Jefferson R. A.,
    2. Kavanagh T. A.,
    3. Bevan M. W.
    (1987) GUS fusions:-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6, 3901–3907
    OpenUrlPubMedWeb of Science
    1. Kempin S. A.,
    2. Savidge B.,
    3. Yanofsky M. F.
    (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522–525
    OpenUrlAbstract/FREE Full Text
    1. Kempin S. A.,
    2. Liljegren S. J.,
    3. Block L. M.,
    4. Rounsley S. D.,
    5. Lam E.,
    6. Yanofsky M. F.
    (1997) Inactivation of the Arabidopsis AGL5 MADS-box gene by homologous recombination. Nature 389, 802–803
    OpenUrlCrossRefPubMedWeb of Science
    1. Krizek B. A.,
    2. Meyerowitz E. M.
    (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide class B organ identity function. Development 112, 11–22
    OpenUrl
    1. Lee I.,
    2. Wolfe D. S.,
    3. Weigel D.
    (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol 7, 95–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Leung S.,
    2. Miyamoto N. G.
    (1989) Point mutational analysis of the human c-fos serum response factor binding site. Nucl. Acids Res 17, 1177–1195
    OpenUrlAbstract/FREE Full Text
    1. Levin J. Z.,
    2. Meyerowitz E. M.
    (1995) UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529–548
    OpenUrlAbstract/FREE Full Text
    1. Ma H.,
    2. Yanofsky M. F.,
    3. Meyerowitz E. M.
    (1991) AGL1 - AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5, 484–495
    OpenUrlAbstract/FREE Full Text
    1. Mandel M. A.,
    2. Yanofsky M. F.
    (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522–524
    OpenUrlCrossRefPubMedWeb of Science
    1. McBride K. E.,
    2. Summerfelt K. R.
    (1990) Improved binary vectors for Agrobacterium- mediated plant transformation. Plant Mol. Biol 14, 269–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Mizukami Y.,
    2. Huang H.,
    3. Tudor M.,
    4. Hu Y.,
    5. Ma H.
    (1996) Functional domains of the floral regulator AGAMOUS: characterization of theDNA binding domain and analysis of dominant negative mutations. Plant Cell 8, 831–845
    OpenUrlAbstract/FREE Full Text
    1. Okamoto H.,
    2. Yano A.,
    3. Shiraishi H.,
    4. Okada K.,
    5. Shimura Y.
    (1994) Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus. Plant Mol. Biol 26, 465–472
    OpenUrlCrossRefPubMedWeb of Science
    1. Passmore S.,
    2. Maine G. T.,
    3. Elble R.,
    4. Christ C.,
    5. Tye B.-K.
    (1988) A Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATa cells. J. Mol. Biol 204, 593–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Pellegrini L.S.T.,
    2. Richmond T. J.
    (1995) Structure of serum response factor core bound to DNA. Nature 376, 490–498
    OpenUrlCrossRefPubMedWeb of Science
    1. Pollock R.,
    2. Treisman R.
    (1990) A sensitive method for the determination of protein-DNA binding specificities. Nucl. Acids Res 16, 6197–6204
    OpenUrl
    1. Purugganan M. D.,
    2. Rounsley S. D.,
    3. Schmidt R. J.,
    4. Yanofsky M. F.
    (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140, 345–356
    OpenUrlAbstract/FREE Full Text
    1. Riechmann J. L.,
    2. Krizek B. A.,
    3. Meyerowitz E. M.
    (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93, 4793–4798
    OpenUrlAbstract/FREE Full Text
    1. Riechmann J. L.,
    2. Wang M.,
    3. Meyerowitz E. M.
    (1996) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucl. Acids Res 24, 3134–41
    OpenUrlAbstract/FREE Full Text
    1. Riechmann J. L.,
    2. Meyerowitz E. M.
    (1997) MADS domain proteins in plant development. Biol. Chem 378, 1079–1101
    OpenUrl
    1. Rounsley S. D.,
    2. Ditta G. S.,
    3. Yanofsky M. F.
    (1995) Diverse roles for MADS box genes in Arabidopsis. Plant Cell 7, 1259–1269
    OpenUrlAbstract/FREE Full Text
    1. Samach A.,
    2. Kohalmi S. E.,
    3. Motte P.,
    4. Datla R.,
    5. Haughn G. W.
    (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9, 559–570
    OpenUrlAbstract/FREE Full Text
    1. Savidge B.,
    2. Rounsley S. D.,
    3. Yanofsky M. F.
    (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7, 721–733
    OpenUrlAbstract/FREE Full Text
    1. Schwarz-Sommer Z.,
    2. Huijser P.,
    3. Nacken W.,
    4. Saedler H.,
    5. Sommer H.
    (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250, 931–936
    OpenUrlAbstract/FREE Full Text
    1. Schwarz-Sommer Z.,
    2. Hue I.,
    3. Huijser P.,
    4. Flor P. J.,
    5. Hansen R.,
    6. Tetens F.,
    7. Lönning W.-E.,
    8. Saedler H.,
    9. Sommer H.
    (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11, 251–263
    OpenUrlPubMedWeb of Science
    1. Shiraishi H.,
    2. Okada K.,
    3. Shimura Y.
    (1993) Nucleotide sequencesrecognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J 4, 385–398
    OpenUrlCrossRefPubMedWeb of Science
    1. Shore P.,
    2. Sharrocks A. D.
    (1995) The MADS-box family of transcription factors. Eur. J. Biochem 229, 1–13
    OpenUrlCrossRefPubMedWeb of Science
    1. Sieburth L. E.,
    2. Meyerowitz E. M.
    (1997) Molecular dissection of the AGAMOUS control region shows essential cis elements for spatial regulation are located intragenically. Plant Cell 9, 355–365
    OpenUrlAbstract/FREE Full Text
    1. Smyth D. R.,
    2. Bowman J. L.,
    3. Meyerowitz E. M.
    (1990) Early flower development in Arabidopsis. Plant Cell 2, 755–767
    OpenUrlAbstract/FREE Full Text
    1. Szymanski P.,
    2. Levine M.
    (1995) Multiple modes of dorsal-bHLH transcriptional synergy in the Drosophila embryo. EMBO J 14, 2229–2238
    OpenUrlPubMedWeb of Science
    1. Theiβen G.,
    2. Kim J. T.,
    3. Saedler H.
    (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol 43, 484–516
    OpenUrlCrossRefPubMedWeb of Science
    1. Treisman R.
    (1986) Identification of a protein-binding site that mediates transcriptional response to the c -fos gene to serum factors. Cell 46, 567–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Treisman R.
    (1992) The serum response element. Trends Biochem. Sci 17, 423–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Tröbner W.,
    2. Ramirez L.,
    3. Motte P.,
    4. Hue I.,
    5. Huijser P.,
    6. Lönnig W.-E.,
    7. Saedler H.,
    8. Sommer H.,
    9. Schwarz-Sommer Z.
    (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11, 4693–4704
    OpenUrlPubMedWeb of Science
    1. Valvekens D.,
    2. Van Montagu M.,
    3. Van Lijsebettens M.
    (1988) Agrobacterium tumefaciens -mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85, 5536–5540
    OpenUrlAbstract/FREE Full Text
    1. Weigel D.,
    2. Alvarez J.,
    3. Smyth D. R.,
    4. Yanofsky M. F.,
    5. Meyerowitz E. M.
    (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859
    OpenUrlCrossRefPubMedWeb of Science
    1. Weigel D.,
    2. Meyerowitz E. M.
    (1993) LEAFY activates floral homeotic genes in Arabidopsis. Science 261, 1723–1726
    OpenUrlAbstract/FREE Full Text
    1. Weigel D.,
    2. Meyerowitz E. M.
    (1994) The ABCs of floral homeotic genes. Cell 78, 203–209
    OpenUrlCrossRefPubMedWeb of Science
    1. Wynne J.,
    2. Treisman R.
    (1992) SRF and MCM1 have related but distinct DNA binding specificities. Nucl. Acids Res 20, 3297–3303
    OpenUrlAbstract/FREE Full Text
    1. Yanofsky M. F.,
    2. Ma H.,
    3. Bowman J. L.,
    4. Drews G. N.,
    5. Feldmann K. A.,
    6. Meyerowitz E. M.
    (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346, 35–39
    OpenUrlCrossRefPubMedWeb of Science
    1. Zachgo S.,
    2. de Andrade Silva E.,
    3. Motte P.,
    4. Tröbner W.,
    5. Saedler H.,
    6. Schwarz-Sommer Z.
    (1995) Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121, 2861–2875
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects
J.J. Tilly, D.W. Allen, T. Jack
Development 1998 125: 1647-1657;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects
J.J. Tilly, D.W. Allen, T. Jack
Development 1998 125: 1647-1657;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992