Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx
J.D. Thatcher, C. Haun, P.G. Okkema
Development 1999 126: 97-107;
J.D. Thatcher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Haun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.G. Okkema
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Gene expression in the pharyngeal muscles of Caenorhabditis elegans is controlled in part by organ-specific signals, which in the myo-2 gene target a short DNA sequence termed the C subelement. To identify genes contributing to these signals, we performed a yeast one-hybrid screen for cDNAs encoding factors that bind the C subelement. One clone recovered was from daf-3, which encodes a Smad most closely related to vertebrate Smad4. We demonstrated that DAF-3 binds C subelement DNA directly and specifically using gel mobility shift and DNase1 protection assays. Mutation of any base in the sequence GTCTG interfered with binding in the gel mobility shift assay, demonstrating that this pentanucleotide is a core recognition sequence for DAF-3 binding. daf-3 is known to promote formation of dauer larvae and this activity is negatively regulated by TGFbeta-like signaling. To determine how daf-3 affects C subelement enhancer activity in vivo, we examined expression a gfp reporter controlled by a concatenated C subelement oligonucleotide in daf-3 mutants and other mutants affecting the TGFbeta-like signaling pathway controlling dauer formation. Our results demonstrate that wild-type daf-3 can repress C subelement enhancer activity during larval development and, like its dauer-promoting activity, daf-3's repressor activity is negatively regulated by TGFbeta-like signaling. We have examined expression of this gfp reporter in dauer larvae and have observed no daf-3-dependent repression of C activity. These results suggest daf-3 directly regulates pharyngeal gene expression during non-dauer development.

Reference

    1. Azzaria M.,
    2. Goszczynski B.,
    3. Chung M. A.,
    4. Kalb J. M.,
    5. McGhee J. D.
    (1996) A fork head/ HNF-3 homolog expressed in the pharynx and intestine of the Caenorhabditis elegans embryo. Dev. Biol 178, 289–303
    OpenUrl
    1. Cassada R. C.,
    2. Russel R. L.
    (1975) The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol 46, 326–342
    OpenUrl
    1. Chen X.,
    2. Rubock M. J.,
    3. Whitman M.
    (1996) A transcriptional partner for MAD proteins in TGF-signalling. Nature 383, 691–696
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen X.,
    2. Weisberg E.,
    3. Fridmacher V.,
    4. Watanabe M.,
    5. Naco G.,
    6. Whitman M.
    (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Christianson T.,
    2. Sikorski R.,
    3. Dante M.,
    4. Shero J.,
    5. Hieter P.
    (1992) Multifunctional yeast high copy number shuttle vectors. Gene 110, 119–122
    OpenUrlCrossRefPubMedWeb of Science
    1. Durfee T.,
    2. Becherer K.,
    3. Chen P.-L.,
    4. Yeh S.-H.,
    5. Yang Y.,
    6. Kilburn A. E.,
    7. Lee W.-H.,
    8. Elledge S. J.
    (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7, 555–569
    OpenUrlAbstract/FREE Full Text
    1. Estevez M.,
    2. Attisano L.,
    3. Wrana J. L.,
    4. Albert P. S.,
    5. Massague J.,
    6. Riddle D. L.
    (1993) The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 365, 644–649
    OpenUrlCrossRefPubMedWeb of Science
    1. Gietz R. D.,
    2. Schiestl R. H.,
    3. Willems A. R.,
    4. Woods R. A.
    (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Georgi L. L.,
    2. Albert P. S.,
    3. Riddle D. L.
    (1990) daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 18, 635–645
    1. Golden J. W.,
    2. Riddle D. L.
    (1982) A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218, 578–580
    OpenUrlAbstract/FREE Full Text
    1. Hahn S. A.,
    2. Schutte M.,
    3. Shamsul Hoque A. T. M.,
    4. Moskaluk C. A.,
    5. da Costa L. T.,
    6. Rozenblum E.,
    7. Weinstein C. L.,
    8. Fischer A.,
    9. Yeo C. J.,
    10. Hruban R. H.,
    11. Kern S. E.
    (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353
    OpenUrlAbstract
    1. Hata A.,
    2. Lagna G.,
    3. Massague J.,
    4. Hemmati-Brivanlou A.
    (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12, 186–197
    OpenUrlAbstract/FREE Full Text
    1. Heldin C. H.,
    2. Miyazono K.,
    3. ten Dijke P.
    (1997) TGF-signalling from cell membrane to the nucleus through SMAD proteins. Nature 390, 465–471
    OpenUrlCrossRefPubMedWeb of Science
    1. Horner M.,
    2. Quintin S.,
    3. Domeier M. E.,
    4. Kimble J.,
    5. Labouesse M.,
    6. Mango S. E.
    (1998) pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in C. elegans. Genes Dev 12, 1947–1952
    OpenUrlAbstract/FREE Full Text
    1. Imamura T.,
    2. Masao T.,
    3. Nishihara A.,
    4. Oeda E.,
    5. Hanai J.,
    6. Kawabata M.,
    7. Miyazono K.
    (1997) Smad6 inhibits signalling by the TGF-superfamily. Nature 389, 622–626
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson A. D.
    (1995) The price of repression. Cell 81, 655–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Kalb J. M.,
    2. Lau K. K.,
    3. Goszczynski B.,
    4. Fukushige T.,
    5. Moons D.,
    6. Okkema P. G.,
    7. McGhee J. D.
    (1998) pha-4 is Ce-fkh-1, a fork head /HNF-3,, homolog that functions in organogenesis of the C. elegans pharynx. Development 125, 2171–2180
    OpenUrlAbstract
    1. Kaufmann E.,
    2. Muller D.,
    3. Knochel W.
    (1995) DNA recognition site analysis of Xenopus winged helix proteins. J. Mol. Biol 248, 239–254
    OpenUrl
    1. Kim J.,
    2. Johnson K.,
    3. Chen H. J.,
    4. Carroll S.,
    5. Laughon A.
    (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigi al by Decapentaplegic. Nature 388, 304–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Kingsley D. M.
    (1994) The TGF-superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133–146
    OpenUrlFREE Full Text
    1. Kretzschmar M.,
    2. Liu F.,
    3. Hata A.,
    4. Doody J.,
    5. Massague J.
    (1997) The TGF-family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11, 984–995
    OpenUrlAbstract/FREE Full Text
    1. Lagna G.,
    2. Hata A.,
    3. Hemmati-Brivanlou A.,
    4. Massague J.
    (1996) Partnership between DPC4 and SMAD proteins in TGF-signalling pathways. Nature 383, 832–836
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu F.,
    2. Pouponnot C.,
    3. Massague J.
    (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGF-inducible transcriptional complexes. Genes Dev 11, 3157–3167
    OpenUrlAbstract/FREE Full Text
    1. Mango S. E.,
    2. Lambie E. J.,
    3. Kimble J.
    (1994) The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 120, 3019–3031
    OpenUrlAbstract
    1. Nakao A.,
    2. Afrakhte M.,
    3. Moren A.,
    4. Nakayama T.,
    5. Christian J. L.,
    6. Heuchel R.,
    7. Itoh S.,
    8. Kawabata M.,
    9. Heldin N. E.,
    10. Heldin C. H.,
    11. ten Dijke P.
    (1997) Identification of Smad7, a TGF-inducible antagonist of TGF- signalling. Nature 389, 631–635
    OpenUrlCrossRefPubMedWeb of Science
    1. Okkema P. G.,
    2. Harrison S. W.,
    3. Plunger V.,
    4. Aryana A.,
    5. Fire A.
    (1993) Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135, 385–404
    OpenUrlAbstract/FREE Full Text
    1. Okkema P. G.,
    2. Fire A.
    (1994) The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 120, 2175–2186
    OpenUrlAbstract
    1. Padgett R. W.,
    2. Savage C.,
    3. Das P.
    (1997) Genetic and biochemical analysis of TGFsignal transduction. Cytokine Growth Factor Rev 8, 1–9
    OpenUrlCrossRefPubMed
    1. Patterson G. I.,
    2. Koweek A.,
    3. Wong A.,
    4. Liu Y.,
    5. Ruvkun G.
    (1997) The DAF-3 Smad protein antagonizes TGF--related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 11, 2679–2690
    OpenUrlAbstract/FREE Full Text
    1. Pierrou S.,
    2. Hellqvist M.,
    3. Samuelsson L.,
    4. Enerback S.,
    5. Carlsson P.
    (1994) Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J 13, 5002–5012
    OpenUrlPubMedWeb of Science
    1. Raftery L. A.,
    2. Twombly V.,
    3. Wharton K.,
    4. Gelbart W. M.
    (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254
    OpenUrlAbstract/FREE Full Text
    1. Ren P.,
    2. Lim C. S.,
    3. Johnsen R.,
    4. Albert P. S.,
    5. Pilgrim D.,
    6. Riddle D. L.
    (1996) Control of C. elegans larval development by neuronal expression of a TGF-homolog. Science 274, 1389–1391
    OpenUrlAbstract/FREE Full Text
    1. Riddle D. L.,
    2. Swanson M. M.,
    3. Albert P. S.
    (1981) Interacting genes in nematode dauer larva formation. Nature 290, 668–671
    OpenUrlCrossRefPubMed
    1. Sekelsky J. J.,
    2. Newfeld S. J.,
    3. Raftery L. A.,
    4. Chartoff E. H.,
    5. Gelbart W. M.
    (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophilamelanogaster. Genetics 139, 1347–1358
    OpenUrlAbstract/FREE Full Text
    1. Sikorski R. S.,
    2. Hieter P.
    (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27
    OpenUrlAbstract/FREE Full Text
    1. Thatcher J. D.,
    2. MacBride B.,
    3. Katula K. S.
    (1995) Promoter binding factors regulating cyclin B transcription in the sea urchin embryo. DNA Cell Biol 14, 869–881
    OpenUrlPubMedWeb of Science
    1. Thomas J. H.,
    2. Birnby D. A.,
    3. Vowels J. J.
    (1993) Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 134, 1105–1117
    OpenUrlAbstract/FREE Full Text
    1. Tsuneizumi K.,
    2. Nakayama T.,
    3. Kamoshida Y.,
    4. Kornberg T. B.,
    5. Christian J. L.,
    6. Tabata T.
    (1997) Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627–631
    OpenUrlCrossRefPubMedWeb of Science
    1. Vowels J. J.,
    2. Thomas J. H.
    (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130, 105–123
    OpenUrlAbstract/FREE Full Text
    1. Wang M. M.,
    2. Reed R. R.
    (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson T. E.,
    2. Fahrner T. J.,
    3. Johnston M.,
    4. Milbrandt J.
    (1991) Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300
    OpenUrlAbstract/FREE Full Text
    1. Wisotzkey R. G.,
    2. Mehra A.,
    3. Sutherland D. J.,
    4. Dobens L. L.,
    5. Liu X.,
    6. Dohrmann C.,
    7. Attisano L.,
    8. Raftery L.
    (1998) Medea is a Drosphila Smad4 homolog that is differentially required to potentiate DPP responses. Development 125, 1433–1445
    OpenUrlAbstract
    1. Wu R. Y.,
    2. Zhang Y.,
    3. Feng X. H.,
    4. Derynck R.
    (1997) Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol 17, 2521–2528
    OpenUrl
    1. Xu X.,
    2. Yin Z.,
    3. Hudson J. B.,
    4. Ferguson E. L.,
    5. Frasch M.
    (1998) Smad proteins act in combination with synergistic and antogonistic regulators to target Dpp responses to the Drosophila mesoder. Genes Dev 12, 2354–2370
    OpenUrlAbstract/FREE Full Text
    1. Yingling J. M.,
    2. Datto M. B.,
    3. Wong C.,
    4. Frederick J. P.,
    5. Liberati N. T.,
    6. Wang X. F.
    (1997) Tumor suppressor Smad4 is a transforming growth factor-inducible DNA binding protein. Mol. Cell. Biol 17, 7019–7028
    OpenUrl
    1. Zawel L.,
    2. Dai J. L.,
    3. Buckhaults P.,
    4. Zhou S.,
    5. Kinzler K. W.,
    6. Vogelstein B.,
    7. Kern S. E.
    (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Molecular Cell 1, 611–617
    OpenUrl
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx
J.D. Thatcher, C. Haun, P.G. Okkema
Development 1999 126: 97-107;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx
J.D. Thatcher, C. Haun, P.G. Okkema
Development 1999 126: 97-107;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The people behind the papers – George Britton and Aryeh Warmflash

George and Aryeh

First author George Britton and his supervisor Aryeh Warmflash discuss their new Development paper in which they apply advanced in vitro culturing techniques to investigate embryonic ectoderm patterning.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


Primer – Principles and applications of optogenetics in developmental biology

Schematic demonstrating the approaches to controlling protein activity using optogenetics.

Protein function can be controlled by light using optogenetic techniques. In their new Primer, Stefano De Renzis and his colleagues in Heidelberg provide an overview of the most commonly used optogenetic tools and their application in developmental biology.


preLights – Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation

Sundar Naganathan

preLighter Sundar Naganathan explains his selected preprint by Vikas Trivedi, Benjamin Steventon and their co-workers on pescoids, a new in vitro model system to study early zebrafish embryogenesis.


Spotlight – Can laboratory model systems instruct human limb regeneration?

An extract from a schematic demonstrating the possible pipeline for how discovery in lab model systems can influence applications for regenerative therapies.

One of the most challenging objectives of tissue regeneration research is regrowth of a lost or amputated limb. Here, Ben Cox, Maximina Yun and Kenneth Poss outline the research avenues yet to be explored to move closer to this capstone achievement.


Articles of interest in our sister journals

Tox4 modulates cell fate reprogramming

Lotte Vanheer, Juan Song, Natalie De Geest, Adrian Janiszewski, Irene Talon, Caterina Provenzano, Taeho Oh, Joel Chappell, Vincent Pasque
Journal of Cell Science

Drosophila melanogaster: a simple system for understanding complexity

Stephanie E. Mohr, Norbert Perrimon
Disease Models & Mechanisms

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992