Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase
M. Boxem, D.G. Srinivasan, S. van den Heuvel
Development 1999 126: 2227-2239;
M. Boxem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.G. Srinivasan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. van den Heuvel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We have identified six protein kinases that belong to the family of cdc2-related kinases in Caenorhabditis elegans. Results from RNA interference experiments indicate that at least one of these kinases is required for cell-cycle progression during meiosis and mitosis. This kinase, encoded by the ncc-1 gene, is closely related to human Cdk1/Cdc2, Cdk2 and Cdk3 and yeast CDC28/cdc2(+). We addressed whether ncc-1 acts to promote passage through a single transition or multiple transitions in the cell cycle, analogous to Cdks in vertebrates or yeasts, respectively. We isolated five recessive ncc-1 mutations in a genetic screen for mutants that resemble larval arrested ncc-1(RNAi) animals. Our results indicate that maternal ncc-1 product is sufficient for embryogenesis, and that zygotic expression is required for cell divisions during larval development. Cells that form the postembryonic lineages in wild-type animals do not enter mitosis in ncc-1 mutants, as indicated by lack of chromosome condensation and nuclear envelope breakdown. However, progression through G1 and S phase appears unaffected, as revealed by expression of ribonucleotide reductase, incorporation of BrdU and DNA quantitation. Our results indicate that C. elegans uses multiple Cdks to regulate cell-cycle transitions and that ncc-1 is the C. elegans ortholog of Cdk1/Cdc2 in other metazoans, required for M phase in meiotic as well as mitotic cell cycles.

Reference

    1. Ahnn J.,
    2. Fire A.
    (1994) A screen for genetic loci required for body-wall muscle development during embryogenesis in Caenorhabditiselegans. Genetics 137, 483–498
    OpenUrlAbstract/FREE Full Text
    1. Ajiro K.,
    2. Yasuda H.,
    3. Tsuji H.
    (1996) Vanadate triggers the transition from chromosome condensation to decondensation in a mitotic mutant (tsTM13) inactivation of p34cdc2/H1 kinase and dephosphorylation of mitosis-specific histone H3. Eur. J. Biochem 241, 923–930
    OpenUrlCrossRefPubMedWeb of Science
    1. Austin J.,
    2. Kimble J.
    (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589–599
    OpenUrlCrossRefPubMedWeb of Science
    1. Brenner S.
    (1974) The genetics of Caenorhabditiselegans. Genetics 77, 71–94
    OpenUrlAbstract/FREE Full Text
    1. Chae T.,
    2. Kwon Y. T.,
    3. Bronson R.,
    4. Dikkes P.,
    5. Li E.,
    6. Tsai L. H.
    (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42
    OpenUrlCrossRefPubMedWeb of Science
    1. De Bondt H. L.,
    2. Rosenblatt J.,
    3. Jancarik J.,
    4. Jones H. D.,
    5. Morgan D. O.,
    6. Kim S. H.
    (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602
    OpenUrlCrossRefPubMedWeb of Science
    1. Draetta G.,
    2. Beach D.
    (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54, 17–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Fang F.,
    2. Newport J. W.
    (1991) Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66, 731–742
    OpenUrlCrossRefPubMedWeb of Science
    1. Fernandez-Sarabia M. J.,
    2. Fantes P. A.
    (1990) Ribonucleotide reductase and its regulation during the cell cycle. Trends Genet 6, 275–276
    OpenUrlCrossRefPubMed
    1. Fire A.,
    2. Xu S.,
    3. Montgomery M. K.,
    4. Kostas S. A.,
    5. Driver S. E.,
    6. Mello C. C.
    (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditiselegans. Nature 391, 806–811
    OpenUrlCrossRefPubMedWeb of Science
    1. Forsburg S. L.,
    2. Nurse P.
    (1991) Cell cycle regulation in the yeasts Saccharomycescerevisiae and Schizosaccharomycespombe. Annu. Rev. Cell Biol 7, 227–256
    OpenUrlCrossRefWeb of Science
    1. Francis R.,
    2. Barton M. K.,
    3. Kimble J.,
    4. Schedl T.
    (1995) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606
    OpenUrlAbstract/FREE Full Text
    1. Gilmore E. C.,
    2. Ohshima T.,
    3. Goffinet A. M.,
    4. Kulkarni A. B.,
    5. Herrup K.
    (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci 18, 6370–6377
    OpenUrlAbstract/FREE Full Text
    1. Girard F.,
    2. Strausfeld U.,
    3. Fernandez A.,
    4. Lamb N. J.
    (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169–1179
    OpenUrlCrossRefPubMedWeb of Science
    1. Graham P. L.,
    2. Kimble J.
    (1993) The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditiselegans. Genetics 133, 919–931
    OpenUrlAbstract/FREE Full Text
    1. Guo S.,
    2. Kemphues K. J.
    (1996) A non-muscle myosin required for embryonic polarity in Caenorhabditiselegans. Nature 382, 455–458
    OpenUrlCrossRefPubMed
    1. Hayashi S.
    (1996) A Cdc2 dependent checkpoint maintains diploidy in Drosophila. Development 122, 1051–1058
    OpenUrlAbstract
    1. Hedgecock E. M.,
    2. White J. G.
    (1985) Polyploid tissues in the nematode Caenorhabditiselegans. Dev. Biol 107, 128–133
    OpenUrlCrossRefPubMedWeb of Science
    1. Hendzel M. J.,
    2. Wei Y.,
    3. Mancini M. A.,
    4. Van Hooser A.,
    5. Ranalli T.,
    6. Brinkley B. R.,
    7. Bazett-Jones D. P.,
    8. Allis C. D.
    (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Hirose T.,
    2. Tamaru T.,
    3. Okumura N.,
    4. Nagai K.,
    5. Okada M.
    (1997) PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur. J. Biochem 249, 481–488
    OpenUrlPubMedWeb of Science
    1. Hocevar B. A.,
    2. Burns D. J.,
    3. Fields A. P.
    (1993) Identification of protein kinase C (PKC) phosphorylation sites on human lamin B. Potential role of PKC in nuclear lamina structural dynamics. J. Biol. Chem 268, 7545–7552
    OpenUrlAbstract/FREE Full Text
    1. Hong Y.,
    2. Roy R.,
    3. Ambros V.
    (1998) Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditiselegans. Development 125, 3585–3597
    OpenUrlAbstract
    1. Hunter C. P.,
    2. Wood W. B.
    (1990) The tra-1 gene determines sexual phenotype cell-autonomously in C. elegans. Cell 63, 1193–1204
    OpenUrlCrossRefPubMedWeb of Science
    1. Jeffrey P. D.,
    2. Russo A. A.,
    3. Polyak K.,
    4. Gibbs E.,
    5. Hurwitz J.,
    6. Massague J.,
    7. Pavletich N. P.
    (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320
    OpenUrlCrossRefPubMedWeb of Science
    1. Kadyk L. C.,
    2. Kimble J.
    (1998) Genetic regulation of entry into meiosis in Caenorhabditiselegans. Development 125, 1803–1813
    OpenUrlAbstract
    1. Kimble J.,
    2. Simpson P.
    (1997) The LIN-12/Notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol 13, 333–361
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimble J. E.,
    2. White J. G.
    (1981) On the control of germ cell development in Caenorhabditiselegans. Dev. Biol 81, 208–219
    OpenUrlCrossRefPubMedWeb of Science
    1. Kirby C.,
    2. Kusch M.,
    3. Kemphues K.
    (1990) Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev. Biol 142, 203–215
    OpenUrlCrossRefPubMed
    1. Knighton D. R.,
    2. Zheng J. H.,
    3. Ten Eyck L. F.,
    4. Ashford V. A.,
    5. Xuong N. H.,
    6. Taylor S. S.,
    7. Sowadski J. M.
    (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414
    OpenUrlAbstract/FREE Full Text
    1. Le Bouffant F.,
    2. Capdevielle J.,
    3. Guillemot J. C.,
    4. Sladeczek F.
    (1998) Characterization of brain PCTAIRE-1 kinase immunoreactivity and its interactions with p11 and 14–3-3 proteins. Eur. J. Biochem 257, 112–120
    OpenUrlPubMed
    1. Lehner C. F.,
    2. O'Farrell P. H.
    (1990) Drosophila cdc2 homologs: a functional homolog is coexpressed with a cognate variant. EMBO J 9, 3573–3581
    OpenUrlPubMedWeb of Science
    1. Lieb J. D.,
    2. Albrecht M. R.,
    3. Chuang P. T.,
    4. Meyer B. J.
    (1998) MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation. Cell 92, 265–277
    OpenUrlCrossRefPubMedWeb of Science
    1. Massague J.
    (1998) TGF-beta signal transduction. Annu. Rev. Biochem 67, 753–791
    OpenUrlCrossRefPubMedWeb of Science
    1. Masui Y.,
    2. Markert C. L.
    (1971) Cytoplasmic control of nuclearbehavior during meiotic maturation of frog oocytes. J. Exp. Zool 177, 129–145
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsushime H.,
    2. Quelle D. E.,
    3. Shurtleff S. A.,
    4. Shibuya M.,
    5. Sherr C. J.,
    6. Kato J. Y.
    (1994) D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell. Biol 14, 2066–2076
    OpenUrlAbstract/FREE Full Text
    1. Matsushime H.,
    2. Roussel M. F.,
    3. Ashmun R. A.,
    4. Sherr C. J.
    (1991) Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701–713
    OpenUrlCrossRefPubMedWeb of Science
    1. McCarter J.,
    2. Bartlett B.,
    3. Dang T.,
    4. Schedl T.
    (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol 205, 111–128
    OpenUrlCrossRefPubMedWeb of Science
    1. Meyerson M.,
    2. Enders G. H.,
    3. Wu C. L.,
    4. Su L. K.,
    5. Gorka C.,
    6. Nelson C.,
    7. Harlow E.,
    8. Tsai L. H.
    (1992) A family of human cdc2-related protein kinases. EMBO J 11, 2909–2917
    OpenUrlPubMedWeb of Science
    1. Mori H.,
    2. Palmer R. E.,
    3. Sternberg P. W.
    (1994) The identification of a Caenorhabditiselegans homolog of p34cdc2 kinase. Mol. Gen. Genet 245, 781–786
    OpenUrlCrossRefPubMedWeb of Science
    1. Nigg E. A.
    (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17, 471–480
    OpenUrlCrossRefPubMedWeb of Science
    1. Nikolic M.,
    2. Dudek H.,
    3. Kwon Y. T.,
    4. Ramos Y. F.,
    5. Tsai L. H.
    (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10, 816–825
    OpenUrlAbstract/FREE Full Text
    1. Nonet M. L.,
    2. Staunton J. E.,
    3. Kilgard M. P.,
    4. Fergestad T.,
    5. Hartwieg E.,
    6. Horvitz H. R.,
    7. Jorgensen E. M.,
    8. Meyer B. J.
    (1997) Caenorhabditis elegansrab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci 17, 8061–8073
    OpenUrlAbstract/FREE Full Text
    1. Norbury C.,
    2. Nurse P.
    (1992) Animal cell cycles and their control. Annu. Rev. Biochem 61, 441–470
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohtsubo M.,
    2. Roberts J. M.
    (1993) Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259, 1908–1912
    OpenUrlAbstract/FREE Full Text
    1. Pagano M.,
    2. Pepperkok R.,
    3. Lukas J.,
    4. Baldin V.,
    5. Ansorge W.,
    6. Bartek J.,
    7. Draetta G.
    (1993) Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol 121, 101–111
    OpenUrlAbstract/FREE Full Text
    1. Peter M.,
    2. Nakagawa J.,
    3. Doree M.,
    4. Labbe J. C.,
    5. Nigg E. A.
    (1990) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591–602
    OpenUrlCrossRefPubMedWeb of Science
    1. Quelle D. E.,
    2. Ashmun R. A.,
    3. Shurtleff S. A.,
    4. Kato J. Y.,
    5. Bar-Sagi D.,
    6. Roussel M. F.,
    7. Sherr C. J.
    (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7, 1559–1571
    OpenUrlAbstract/FREE Full Text
    1. Riabowol K.,
    2. Draetta G.,
    3. Brizuela L.,
    4. Vandre D.,
    5. Beach D.
    (1989) The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57, 393–401
    OpenUrlCrossRefPubMedWeb of Science
    1. Rose K. L.,
    2. Winfrey V. P.,
    3. Hoffman L. H.,
    4. Hall D. H.,
    5. Furuta T.,
    6. Greenstein D.
    (1997) The POU gene ceh-18 promotes gonadal sheath celldifferentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol 192, 59–77
    OpenUrlCrossRefPubMed
    1. Sauer K.,
    2. Weigmann K.,
    3. Sigrist S.,
    4. Lehner C. F.
    (1996) Novel members of the cdc2-related kinase family in Drosophila: cdk4/6, cdk5, PFTAIRE, and PITSLRE kinase. Mol. Biol. Cell 7, 1759–1769
    OpenUrlAbstract/FREE Full Text
    1. Sherr C. J.
    (1994) G1 phase progression: cycling on cue. Cell 79, 551–555
    OpenUrlCrossRefPubMedWeb of Science
    1. Sherr C. J.
    (1996) Cancer cell cycles. Science 274, 1672–1677
    OpenUrlAbstract/FREE Full Text
    1. Sherr C. J.,
    2. Roberts J. M.
    (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9, 1149–1163
    OpenUrlFREE Full Text
    1. Sigrist S.,
    2. Ried G.,
    3. Lehner C. F.
    (1995) Dmcdc2 kinase is required for both meiotic divisions during Drosophila spermatogenesis and is activated by the Twine/cdc25 phosphatase. Mech. Dev 53, 247–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Slack F.,
    2. Ruvkun G.
    (1997) Temporal pattern formation by heterochronic genes. Annu. Rev. Genet 31, 611–634
    OpenUrlCrossRefPubMedWeb of Science
    1. Stern B.,
    2. Ried G.,
    3. Clegg N. J.,
    4. Grigliatti T. A.,
    5. Lehner C. F.
    (1993) Genetic analysis of the Drosophila cdc2 homolog. Development 117, 219–232
    OpenUrlAbstract/FREE Full Text
    1. Storfer-Glazer F. A.,
    2. Wood W. B.
    (1994) Effects of chromosomal deficiencies on early cleavage patterning and terminal phenotype in Caenorhabditiselegans embryos. Genetics 137, 499–508
    OpenUrlAbstract/FREE Full Text
    1. Sulston J. E.,
    2. Horvitz H. R.
    (1977) Post-embryonic cell lineages of the nematode, Caenorhabditiselegans. Dev. Biol 56, 110–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Horvitz H. R.
    (1981) Abnormal cell lineages in mutants of the nematode Caenorhabditiselegans. Dev. Biol 82, 41–55
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Schierenberg E.,
    3. White J. G.,
    4. Thomson J. N.
    (1983) The embryonic cell lineage of the nematode Caenorhabditiselegans. Dev. Biol 100, 64–119
    OpenUrlCrossRefPubMedWeb of Science
    1. Tabara H.,
    2. Grishok A.,
    3. Mello C. C.
    (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431
    OpenUrlFREE Full Text
  1. TheSequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018
    OpenUrlAbstract/FREE Full Text
    1. Th'ng J. P.,
    2. Wright P. S.,
    3. Hamaguchi J.,
    4. Lee M. G.,
    5. Norbury C. J.,
    6. Nurse P.,
    7. Bradbury E. M.
    (1990) The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63, 313–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsai L. H.,
    2. Lees E.,
    3. Faha B.,
    4. Harlow E.,
    5. Riabowol K.
    (1993) The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 8, 1593–1602
    OpenUrlPubMedWeb of Science
    1. Tsai L. H.,
    2. Takahashi T.,
    3. Caviness V. S. Jr.,
    4. Harlow E.
    (1993) Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040
    OpenUrlAbstract
    1. van den Heuvel S.,
    2. Harlow E.
    (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054
    OpenUrlAbstract/FREE Full Text
    1. Ward G. E.,
    2. Kirschner M. W.
    (1990) Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell 61, 561–577
    OpenUrlCrossRefPubMedWeb of Science
    1. Williams B. D.,
    2. Schrank B.,
    3. Huynh C.,
    4. Shownkeen R.,
    5. Waterston R. H.
    (1992) A genetic mapping system in Caenorhabditiselegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase
M. Boxem, D.G. Srinivasan, S. van den Heuvel
Development 1999 126: 2227-2239;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase
M. Boxem, D.G. Srinivasan, S. van den Heuvel
Development 1999 126: 2227-2239;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992