Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression
E.J. Huang, K. Zang, A. Schmidt, A. Saulys, M. Xiang, L.F. Reichardt
Development 1999 126: 2869-2882;
E.J. Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Zang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Schmidt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Saulys
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Xiang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.F. Reichardt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mice lacking the POU domain-containing transcription factor Brn-3a have several neuronal deficits. In the present paper, we show that Brn-3a plays two distinct roles during development of the trigeminal ganglion. In this ganglion, neurons expressing the neurotrophin receptors, TrkB and TrkC, are born between E9.5 and E11.5. In the absence of Brn-3a, very few neurons ever express TrkC, but TrkB-expressing neurons are present at E12.5 in elevated numbers, suggesting that Brn-3a may be a constituent of a regulatory circuit determining which Trk receptor is expressed by these early-born neurons. Most neurons expressing the neurotrophin receptor TrkA are generated between E11.5 and E13.5 in this ganglion and their initial generation is not prevented by absence of Brn-3a. However, after E12. 5, absence of Brn-3a results in a progressive loss in neuronal TrkA and TrkB expression, which leads to a massive wave of apoptosis that peaks at E15.5. Despite complete absence of the Trk receptors at E17. 5 and P0, approximately 30% of the normal complement of neurons survive to birth in Brn-3a mutants. Approximately 70% of these express the GDNF receptor subunit, c-ret; many can be sustained by GDNF, but not by NGF in culture. Thus, the vast majority of surviving neurons are probably sustained in vivo by trophic factor(s) whose receptors are not regulated by Brn-3a. In conclusion, our data indicate the specific functions of Brn-3a in controlling the survival and differentiation of trigeminal neurons by regulating expression of each of the three Trk receptors.

Reference

    1. Bamji S. X.,
    2. Majdan M.,
    3. Pozniak C. D.,
    4. Belliveau D. J.,
    5. Aloyz R.,
    6. Kohn J.,
    7. Causing C. G.,
    8. Miller F. D.
    (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol 140, 911–923
    OpenUrlAbstract/FREE Full Text
    1. Bennett D. L.,
    2. Michael G. J.,
    3. Ramachandran N.,
    4. Munson J. B.,
    5. Averill S.,
    6. Yan Q.,
    7. McMahon S. B.,
    8. Priestley J. V.
    (1998) A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci 18, 3059–3072
    OpenUrlAbstract/FREE Full Text
    1. Bergmann I.,
    2. Priestley J. V.,
    3. McMahon S. B.,
    4. Bröcker E. B.,
    5. Toyka K. V.,
    6. Koltzenburg M.
    (1997) Analysis of cutaneous sensory neurons in transgenic mice lacking the low affinity neurotrophin receptor p75. Eur. J. Neurosci 9, 18–28
    OpenUrlCrossRefPubMedWeb of Science
    1. Bothwell M.
    (1995) Functional interactions of neurotrophins and neurotrophin receptors. Ann. Rev. Neurosci 18, 223–253
    OpenUrlCrossRefPubMedWeb of Science
    1. Buchman V. L.,
    2. Davies A. M.
    (1993) Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118, 989–1001
    OpenUrlAbstract
    1. Buj-Bello A.,
    2. Buchman V. L.,
    3. Horton A.,
    4. Rosenthal A.,
    5. Davies A. M.
    (1995) GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15, 821–828
    OpenUrlCrossRefPubMedWeb of Science
    1. Cacalano G.,
    2. Fariñas I.,
    3. Wang L. C.,
    4. Hagler K.,
    5. Forgie A.,
    6. Moore M.,
    7. Armanini M.,
    8. Phillips H.,
    9. Ryan A. M.,
    10. Reichardt L. F.,
    11. et al.
    (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21, 53–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Casaccia-Bonnefil P.,
    2. Carter B. D.,
    3. Dobrowsky R. T.,
    4. Chao M. V.
    (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719
    OpenUrlCrossRefPubMed
    1. Chalfie M.
    (1993) Touch receptor development and function in Caenorhabditis elegans. J. Neurobiol 24, 1433–1441
    OpenUrlCrossRefPubMedWeb of Science
    1. Clary D. O.,
    2. Weskamp G.,
    3. Austin L. R.,
    4. Reichardt L. F.
    (1994) TrkA cross-linking mimics neuronal responses to nerve growth factor. Mol. Biol. Cell 5, 549–563
    OpenUrlAbstract/FREE Full Text
    1. Crowley C.,
    2. Spencer S. D.,
    3. Nishimura M. C.,
    4. Chen K. S.,
    5. Pitts-Meek S.,
    6. Armanini M. P.,
    7. Ling L. H.,
    8. MacMahon S. B.,
    9. Shelton D. L.,
    10. Levinson A. D.,
    11. et al.
    (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011
    OpenUrlCrossRefPubMedWeb of Science
    1. Davies A.,
    2. Lumsden A.
    (1984) Relation of target encounter and neuronal death to nerve growth factor responsiveness in the developing mouse trigeminal ganglion. J. Comp. Neurol 223, 124–137
    OpenUrlCrossRefPubMedWeb of Science
    1. ElShamy W. M.,
    2. Ernfors P.
    (1996) Requirement of neurotrophin-3 for the survival of proliferating trigeminal ganglion progenitor cells. Development 122, 2405–2414
    OpenUrlAbstract
    1. Enomoto H.,
    2. Araki T.,
    3. Jackman A.,
    4. Heuckeroth R. O.,
    5. Snider W. D.,
    6. Johnson E. M. Jr.,
    7. Milbrandt J.
    (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Erkman L.,
    2. McEvilly R. J.,
    3. Luo L.,
    4. Ryan A. K.,
    5. Hooshmand F.,
    6. O'Connell S. M.,
    7. Keithley E. M.,
    8. Rapaport D. H.,
    9. Ryan A. F.,
    10. Rosenfeld M. G.
    (1996). Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606
    OpenUrlCrossRefPubMed
    1. Fariñas I.,
    2. Jones K.R.,
    3. Backus C.,
    4. Wang X.-Y.,
    5. Reichardt L.F.
    (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Fariñas I.,
    2. Wilkinson G. A.,
    3. Backus C.,
    4. Reichardt L. F.,
    5. Patapoutian A.
    (1998) Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Neuron 21, 325–334
    OpenUrlCrossRefPubMedWeb of Science
    1. Fedtsova N. G.,
    2. Turner E. E.
    (1995). Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech. Dev 53, 291–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Fode C.,
    2. Gradwohl G.,
    3. Morin X.,
    4. Dierich A.,
    5. LeMeur M.,
    6. Goridis C.,
    7. Guillemot F.
    (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494
    OpenUrlCrossRefPubMedWeb of Science
    1. Frade J. M.,
    2. Rodríguez-Tebar A.,
    3. Barde Y. A.
    (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168
    OpenUrlCrossRefPubMed
    1. Gan L.,
    2. Xiang M.,
    3. Zhou L.,
    4. Wagner D. S.,
    5. Klein W. H.,
    6. Nathans J.
    (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 93, 3920–3925
    OpenUrlAbstract/FREE Full Text
    1. Gerrero M. R.,
    2. McEvilly R. J.,
    3. Turner E.,
    4. Lin C. R.,
    5. O'Connell S.,
    6. Jenne K. J.,
    7. Hobbs M. V.,
    8. Rosenfeld M. G.
    (1993). Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. Proc. Natl. Acad. Sci. USA 90, 10841–10845
    OpenUrlAbstract/FREE Full Text
    1. Gradwohl G.,
    2. Fode C.,
    3. Guillemot F.
    (1996) Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev. Biol 180, 227–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Horton A. R.,
    2. Barlett F. P.,
    3. Pennica D.,
    4. Davies A. M.
    (1998) Cytokines promote the survival of mouse cranial sensory neurones at different developmental stages. Eur. J. Neurosci 10, 673–679
    OpenUrlCrossRefPubMedWeb of Science
    1. Huang E. J.,
    2. Wilkinson G. A.,
    3. Fariñas I.,
    4. Backus C.,
    5. Zang K.,
    6. Wong S.,
    7. Reichardt L. F.
    (1999) Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development 126, 2191–2203
    OpenUrlAbstract
    1. Jan Y. N.,
    2. Jan L. Y.
    (1994) Genetic control of cell fate specification in Drosophila peripheral nervous system. Ann. Rev. Genetics 28, 373–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Jones K. R.,
    2. Fariñas I.,
    3. Backus C.,
    4. Reichardt L. F.
    (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999
    OpenUrlCrossRefPubMedWeb of Science
    1. Klein R.,
    2. Silos-Santiago I.,
    3. Smeyne R. J.,
    4. Lira S. A.,
    5. Brambilla R.,
    6. Bryant S.,
    7. Zhang L.,
    8. Snider W. D.,
    9. Barbacid M.
    (1994) Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368, 249–251
    OpenUrlCrossRefPubMed
    1. Klein R.,
    2. Smeyne R. J.,
    3. Wurst W.,
    4. Long L. K.,
    5. Auerbach B. A.,
    6. Joyner A. L.,
    7. Barbacid M.
    (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75, 113–122
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma Q.,
    2. Chen Z.,
    3. del Barco Barrantes I.,
    4. de la Pompa J. L.,
    5. Anderson D. J.
    (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma Q.,
    2. Kintner C.,
    3. Anderson D. J.
    (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52
    OpenUrlCrossRefPubMedWeb of Science
    1. McEvilly R. J.,
    2. Erkman L.,
    3. Luo L.,
    4. Sawchenko P. E.,
    5. Ryan A. F.,
    6. Rosenfeld M. G.
    (1996). Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384, 574–577
    OpenUrlCrossRefPubMedWeb of Science
    1. Molliver D. C.,
    2. Wright D. E.,
    3. Leitner M. L.,
    4. Parsadanian A. S.,
    5. Doster K.,
    6. Wen D.,
    7. Yan Q.,
    8. Snider W. D.
    (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19, 849–861
    OpenUrlCrossRefPubMedWeb of Science
    1. Moore M. W.,
    2. Klein R. D.,
    3. Fariñas I.,
    4. Sauer H.,
    5. Armanini M.,
    6. Phillips H.,
    7. Reichardt L. F.,
    8. Ryan A. M.,
    9. Carver-Moore K.,
    10. Rosenthal A.
    (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79
    OpenUrlCrossRefPubMedWeb of Science
    1. Motoyama N.,
    2. Wang F.,
    3. Roth K. A.,
    4. Sawa H.,
    5. Nakayama K.,
    6. Negishi I.,
    7. Senju S.,
    8. Zhang Q.,
    9. Fujii S.,
    10. et al.
    (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510
    OpenUrlAbstract/FREE Full Text
    1. Paul G.,
    2. Davies A. M.
    (1995) Trigeminal sensory neurons require extrinsic signals to switch neurotrophin dependence during the early stages of target field innervation. Dev. Biol 171, 590–605
    OpenUrlCrossRefPubMedWeb of Science
    1. Pichel J. G.,
    2. Shen L.,
    3. Sheng H. Z.,
    4. Granholm A. C.,
    5. Drago J.,
    6. Grinberg A.,
    7. Lee E. J.,
    8. Huang S. P.,
    9. Saarma M.,
    10. Hoffer B. J.,
    11. et al.
    (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76
    OpenUrlCrossRefPubMed
    1. Piñon L. G.,
    2. Minichiello L.,
    3. Klein R.,
    4. Davies A. M.
    (1996) Timing of neuronal death in trkA, trkB and trkC mutant embryos reveals developmental changes in sensory neuron dependence on Trk signaling. Development 122, 3255–3261
    OpenUrlAbstract
    1. Piñon L. G.,
    2. Middleton G.,
    3. Davies A. M.
    (1997) Bcl-2 is required for cranial sensory neuron survival at defined stages of embryonic development. Development 124, 4173–4178
    OpenUrlAbstract
    1. Sánchez M. P.,
    2. Silos-Santiago I.,
    3. Frisen J.,
    4. He B.,
    5. Lira S. A.,
    6. Barbacid M.
    (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73
    OpenUrlCrossRefPubMed
    1. Schuchardt A.,
    2. D'Agati V.,
    3. Larsson-Blomberg L.,
    4. Costantini F.,
    5. Pachnis V.
    (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383
    OpenUrlCrossRefPubMedWeb of Science
    1. Serbedzija G. N.,
    2. Bronner-Fraser M.,
    3. Fraser S. E.
    (1994) Developmental potential of trunk neural crest cells in the mouse. Development 120, 1709–1718
    OpenUrlAbstract
    1. Serbedzija G. N.,
    2. Bronner-Fraser M.,
    3. Fraser S. E.
    (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307
    OpenUrlAbstract/FREE Full Text
    1. Smeyne R. J.,
    2. Klein R.,
    3. Schnapp A.,
    4. Long L. K.,
    5. Bryant S.,
    6. Lewin A.,
    7. Lira S. A.,
    8. Barbacid M.
    (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246–249
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith M. D.,
    2. Dawson S. J.,
    3. Boxer L. M.,
    4. Latchman D. S.
    (1998) The N-terminal domain unique to the long form of the Brn-3a transcription factor is essential to protect neuronal cells from apoptosis and for the activation of Bcl-2 gene expression. Nucleic Acid Res 26, 4100–4107
    OpenUrlAbstract/FREE Full Text
    1. Snider W. D.,
    2. McMahon S. B.
    (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632
    OpenUrlCrossRefPubMedWeb of Science
    1. Stucky C. L.,
    2. Koltzenburg M.
    (1997) The low-affinity neurotrophin receptor p75 regulates the function but not the selective survival of specific subpopulations of sensory neurons. J. Neurosci 17, 4398–4405
    OpenUrlAbstract/FREE Full Text
    1. Tessarollo L.,
    2. Tsoulfas P.,
    3. Donovan M. J.,
    4. Palko M. E.,
    5. Blair-Flynn J.,
    6. Hempstead B. L.,
    7. Parada L. F.
    (1997) Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proc. Natl. Acad. Sci. USA 94, 14776–14781
    OpenUrlAbstract/FREE Full Text
    1. Treacy M. N.,
    2. Rosenfeld M. G.
    (1992) Expression of a family of POU-domain protein regulatory genes during development of the central nervous system. Ann. Rev. Neurosci 15, 139–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Weskamp G.,
    2. Reichardt L. F.
    (1991) Evidence that biological activity of NGF is mediated through a novel subclass of high affinity receptors. Neuron 6, 649–663
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkinson G. A.,
    2. Fariñas I.,
    3. Backus C.,
    4. Yoshida C. K.,
    5. Reichardt L. F.
    (1996) Neurotrophin-3 is a survival factor in vivo for early mouse trigeminal neurons. J. Neurosci 16, 7661–7669
    OpenUrlAbstract/FREE Full Text
    1. Xiang M.,
    2. Gao W.-Q.,
    3. Hasson T.,
    4. Shin J. J.
    (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination for inner ear hair cells. Development 125, 3935–3946
    OpenUrlAbstract
    1. Xiang M.,
    2. Gan L.,
    3. Li D.,
    4. Zhou L.,
    5. Chen Z. Y.,
    6. Wagner D.,
    7. O'Malley B. W. Jr.,
    8. Klein W.,
    9. Nathans J.
    (1997) Role of the Brn-3 family of POU-domain genes in the development of the auditory/vestibular, somatosensory, and visual systems. Cold Spring Harbor Symp. Quant. Biol 62, 325–336
    OpenUrlAbstract/FREE Full Text
    1. Xiang M.,
    2. Gan L.,
    3. Li D.,
    4. Chen Z. Y.,
    5. Zhou L.,
    6. O'Malley B. W. Jr.,
    7. Klein W.,
    8. Nathans J.
    (1997) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc. Natl. Acad. Sci. USA 94, 9445–9450
    OpenUrlAbstract/FREE Full Text
    1. Xiang M.,
    2. Gan L.,
    3. Zhou L.,
    4. Klein W. H.,
    5. Nathans J.
    (1996) Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc. Natl. Acad. Sci. USA 93, 11950–11955
    OpenUrlAbstract/FREE Full Text
    1. Xiang M.,
    2. Zhou L.,
    3. Macke J. P.,
    4. Yoshioka T.,
    5. Hendry S. H.,
    6. Eddy R. L.,
    7. Shows T. B.,
    8. Nathans J.
    (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J. Neurosci 15, 4762–4785
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression
E.J. Huang, K. Zang, A. Schmidt, A. Saulys, M. Xiang, L.F. Reichardt
Development 1999 126: 2869-2882;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
POU domain factor Brn-3a controls the differentiation and survival of trigeminal neurons by regulating Trk receptor expression
E.J. Huang, K. Zang, A. Schmidt, A. Saulys, M. Xiang, L.F. Reichardt
Development 1999 126: 2869-2882;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992