Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection
A. Picker, C. Brennan, F. Reifers, J.D. Clarke, N. Holder, M. Brand
Development 1999 126: 2967-2978;
A. Picker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Brennan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Reifers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.D. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Holder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Brand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The organizer at the midbrain-hindbrain boundary (MHB organizer) has been proposed to induce and polarize the midbrain during development. We investigate the requirement for the MHB organizer in acerebellar mutants, which lack a MHB and cerebellum, but retain a tectum, and are mutant for fgf8, a candidate inducer and polarizer. We examine the retinotectal projection in the mutants to assay polarity in the tectum. In mutant tecta, retinal ganglion cell (RGC) axons form overlapping termination fields, especially in the ventral tectum, and along both the anterior-posterior and dorsal-ventral axis of the tectum, consistent with a MHB requirement in generating midbrain polarity. However, polarity is not completely lost in the mutant tecta, in spite of the absence of the MHB. Moreover, graded expression of the ephrin family ligand Ephrin-A5b is eliminated, whereas Ephrin-A2 and Ephrin-A5a expression is leveled in acerebellar mutant tecta, showing that ephrins are differentially affected by the absence of the MHB. Some RGC axons overshoot beyond the mutant tectum, suggesting that the MHB also serves a barrier function for axonal growth. By transplanting whole eye primordia, we show that mapping defects and overshooting largely, but not exclusively, depend on tectal, but not retinal genotype, and thus demonstrate an independent function for Fgf8 in retinal development. The MHB organizer, possibly via Fgf8 itself, is thus required for midbrain polarisation and for restricting axonal growth, but other cell populations may also influence midbrain polarity.

Reference

    1. Baier H.,
    2. Bonhoeffer F.
    (1994) Attractive axon guidance molecules. Science 265, 1541–1542
    OpenUrlFREE Full Text
    1. Braisted J. E.,
    2. McLaughlin T.,
    3. Wang H. U.,
    4. Friedman G. C.,
    5. Anderson D. J.,
    6. O'Leary D. D. M.
    (1997) Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases an the developing retinotectal system. Dev. Biol 191, 14–28
    OpenUrlCrossRefPubMedWeb of Science
    1. Brand M.,
    2. Heisenberg C.-P.,
    3. Jiang Y.-J.,
    4. Beuchle D.,
    5. Lun K.,
    6. van Eeden F. J. M.,
    7. Furutani-Seiki M.,
    8. Granato M.,
    9. Haffter P.,
    10. Hammerschmidt M.,
    11. et al.
    (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179–190
    OpenUrlAbstract/FREE Full Text
    1. Brennan C.,
    2. Monschau B.,
    3. Lindberg R.,
    4. Guthrie B.,
    5. Drescher U.,
    6. Bonhoeffer F.,
    7. Holder N.
    (1997) Two Eph receptor tyrosine kinase ligands control axon growth and may be involved in the creation of the retinotectal map in the zebrafish. Development 124, 655–664
    OpenUrlAbstract
    1. Burrill J. D.,
    2. Easter S. Jr
    (1994) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J. Comp. Neurol 346, 583–600
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheng H. J.,
    2. Flanagan J. G.
    (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168
    OpenUrlCrossRefPubMedWeb of Science
    1. Chung S. H.,
    2. Cooke J.
    (1978) Observations on the formation of the brain and of nerve connections following embryonic manipulation of the amphibian neural tube. Proc. R. Soc. Lond. B Biol. Sci 201, 335–373
    OpenUrlPubMed
    1. Colamarino S. A.,
    2. Tessier-Lavigne M.
    (1995) The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629
    OpenUrlCrossRefPubMedWeb of Science
    1. Connor R. J.,
    2. Menzel P.,
    3. Pasquale E. B.
    (1998) Expression and tyrosine pPhosphorylation of Eph receptors suggest multiple mechanisms in pattering of the visual system. Dev. Biol 193, 21–35
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martin G. R.
    (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451
    OpenUrlAbstract
    1. Crossley P. H.,
    2. Martinez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68
    OpenUrlCrossRefPubMed
    1. Davis C. A.,
    2. Holmyard D. P.,
    3. Millen K. J.,
    4. Joyner A. L.
    (1991) Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111, 287–298
    OpenUrlAbstract
    1. Drescher U.,
    2. Kremoser C.,
    3. Handwerker C.,
    4. Löschinger J.,
    5. Noda M.,
    6. Bonhoeffer F.
    (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370
    OpenUrlCrossRefPubMedWeb of Science
    1. Flanagan J. G.,
    2. Vanderhaeghen P.
    (1998) The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci 21, 309–345
    OpenUrlCrossRefPubMedWeb of Science
    1. Friedman G. C.,
    2. O'Leary D. D.
    (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J. Neurosci 16, 5498–5509
    OpenUrlAbstract/FREE Full Text
    1. Frisen J.,
    2. Yates P. A.,
    3. McLaughlin T.,
    4. Friedman G. C.,
    5. O'Leary D. D. M.,
    6. Barbacid M.
    (1998) Ephrin-A5 (Al-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Fujisawa H.
    (1981) Retinotopic analysis of fiber pathways in the regenerating retinotectal system of the adult newt Cynops pyrrhogaster. Brain Res 206, 27–37
    OpenUrlCrossRefPubMed
    1. Gardner C. A.,
    2. Barald K. F.
    (1991) The cellular environment controls the expression of engrailed-like protein in the cranial neuroepithelium of quail-chick chimeric embryos. Development 113, 1037–1048
    OpenUrlAbstract
    1. Harris W. A.
    (1980) The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. J. Comp. Neurol 194, 303–317
    OpenUrlCrossRefPubMedWeb of Science
    1. Harris W. A.
    (1982) The transplantation of eyes to genetically eyeless salamanders: visual projections and somatosensory interactions. J. Neurosci 2, 339–353
    OpenUrlAbstract
    1. Heisenberg C.-P.,
    2. Brennan C.,
    3. Wilson S. W.
    (1999) Zebrafish aussicht mutants exhibit widespread overexpression of ace (fgf8) and coincident defects in CNS development. Development 126, 2129–2140
    OpenUrlAbstract
    1. Holash J. A.,
    2. Pasquale E. B.
    (1995) polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system. Dev. Biol 172, 683–693
    OpenUrlCrossRefPubMedWeb of Science
    1. Holt C. E.,
    2. Harris W. A.
    (1993) Position, guidance, and mapping in the developing visual system. J. Neurobiol 24, 1400–1422
    OpenUrlCrossRefPubMedWeb of Science
    1. Itasaki N.,
    2. Ichijo H.,
    3. Hama C.,
    4. Matsuno T.,
    5. Nakamura H.
    (1991) Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity. Development 113, 1133–1144
    OpenUrlAbstract
    1. Itasaki N.,
    2. Nakamura H.
    (1992) Rostrocaudal polarity of the tectum in birds: correlation of en gradient and topographic order in retinotectal projection. Neuron 8, 787–798
    OpenUrlCrossRefPubMedWeb of Science
    1. Joyner A. L.
    (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12, 15–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaethner R. J.,
    2. Stuermer C. A.
    (1992) Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons. J. Neurosci 12, 3257–3271
    OpenUrlAbstract
    1. Kaethner R. J.,
    2. Stuermer C. A.
    (1994) Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade. J. Neurobiol 25, 781–796
    OpenUrlCrossRefPubMedWeb of Science
    1. Karlstrom R. O.,
    2. Trowe T.,
    3. Klostermann S.,
    4. Baier H.,
    5. Brand M.,
    6. Crawford A. D.,
    7. Grunewald B.,
    8. Haffter P.,
    9. Hoffman H.,
    10. Meyer S. U.,
    11. et al.
    (1996) Zebrafish mutations affecting retinotectal axon pathfinding. Development 123, 427–438
    OpenUrlAbstract/FREE Full Text
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullmann B.,
    5. Schilling T. F.
    (1995) Stages of embryonic development of the zebrafish. Dev. Dyn 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. La Vail M. M.,
    2. Hild W.
    (1971) Histotypic organization of the rat retina in vitro. Z. Zellforsch. Mikrosk. Anat 114, 557–579
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee S. M.,
    2. Danielian P. S.,
    3. Fritzsch B.,
    4. McMahon A. P.
    (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969
    OpenUrlAbstract
    1. Logan C.,
    2. Wizenmann A.,
    3. Drescher U.,
    4. Monschau B.,
    5. Bonhoeffer F.,
    6. Lumsden A.
    (1996) Rostral optic tectum aquires caudal characteristics following ectopic Engrailed expression. Curr. Biol 6, 1006–1014
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1123
    OpenUrlAbstract/FREE Full Text
    1. Lun K.,
    2. Brand M.
    (1998). A series of no isthmus (noi) alleles of thezebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125, 3049–3062
    OpenUrlAbstract
    1. Macdonald R.,
    2. Scholes J.,
    3. Strähle U.,
    4. Brennan C.,
    5. Holder N.,
    6. Brand M.,
    7. Wilson S. W.
    (1997) The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development 124, 2397–2408
    OpenUrlAbstract
    1. Maggs A.,
    2. Scholes J.
    (1986) Glial domains and nerve fiber patterns in the fish retinotectal pathway. J. Neurosci 6, 424–438
    OpenUrlAbstract
    1. Martinez S.,
    2. Alvarado-Mallart R. M.
    (1990) Expression of the homeobox Chick-en gene in chick/quail chimeras with inverted mes-metencephalic grafts. Dev. Biol 139, 432–436
    OpenUrlCrossRefPubMedWeb of Science
    1. Martinez S.,
    2. Wassef M.,
    3. Alvarado-Mallart R. M.
    (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981
    OpenUrlCrossRefPubMedWeb of Science
    1. McFarlane S.,
    2. Cornel E.,
    3. Amaya E.,
    4. Holt C. E.
    (1996) Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. Neuron 17, 245–254
    OpenUrlCrossRefPubMedWeb of Science
    1. Millen K. J.,
    2. Wurst W.,
    3. Herrup K.,
    4. Joyner A.
    (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120, 695–706
    OpenUrlAbstract
    1. Millet S.,
    2. Alvarado-Mallart R. M.
    (1995) Expression of the homeobox-containing gene En-2 during the development of the chick central nervous system. Eur. J. Neurosci 7, 777–791
    OpenUrlCrossRefPubMedWeb of Science
    1. Monschau B.,
    2. Kremoser C.,
    3. Ohta K.,
    4. Tanaka H.,
    5. Kaneko T.,
    6. Yamada T.,
    7. Handwerker C.,
    8. Hornberger M. R.,
    9. Löschinger J.,
    10. Pasquale E. B.,
    11. et al.
    (1997) Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J 16, 1258–1267
    OpenUrlAbstract
    1. Nakamura H.,
    2. Itasaki N.,
    3. Matsuno T.
    (1994) Rostrocaudal polarity formation of chick optic tectum. Int. J. Dev. Biol 38, 281–286
    OpenUrlPubMed
    1. O'Leary D. D. M.,
    2. Yates P. A.,
    3. McLaughlin T.
    (1999) Molecular development of sensory maps: representing sights and smells in the brain. Cell 96, 255–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Orioli D.,
    2. Klein R.
    (1997) The Eph receptor family: axonal guidance by contact repulsion. Trends Genet 13, 354–359
    OpenUrlCrossRefPubMedWeb of Science
    1. Postlethwait J. H.,
    2. Yan Y. L.,
    3. Gates M. A.,
    4. Horne S.,
    5. Amores A.,
    6. Brownlie A.,
    7. Donovan A.,
    8. Egan E. S.,
    9. Force A.,
    10. Gong Z.,
    11. et al.
    (1998) Vertebrate genome evolution and the zebrafish gene map. Nature Genet 18, 345–349
    OpenUrlCrossRefPubMedWeb of Science
    1. Reifers F.,
    2. Böhli H.,
    3. Walsh E. C.,
    4. Crossley P. H.,
    5. Stainier D. Y. R.,
    6. Brand M.
    (1998) Fgf8 is mutated in zebrafish acerebellar mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395
    OpenUrlAbstract
    1. Retaux S.,
    2. Harris W. A.
    (1996) Engrailed and retinotectal topography. Trends Neurosci 19, 542–546
    OpenUrlCrossRefPubMedWeb of Science
    1. Retaux S.,
    2. McNeill L.,
    3. Harris W. A.
    (1996) Engrailed, retinotectal targeting, and axonal patterning in the midbrain during Xenopus development: an antisense study. Neuron 16, 63–75
    OpenUrlCrossRefPubMed
    1. Saffell J. L.,
    2. Williams E. J.,
    3. Mason I. J.,
    4. Walsh F. S.,
    5. Doherty P.
    (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18, 231–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Shamim H.,
    2. Mahmood R.,
    3. Logan C.,
    4. Doherty P.,
    5. Lumsden A.,
    6. Mason I.
    (1999) Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945–959
    OpenUrlAbstract
    1. Stuermer C. A. O.
    (1988) Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J. Neurosci 8, 4513–4530
    OpenUrlAbstract
    1. Stuermer C. A.,
    2. Rohrer B.,
    3. Munz H.
    (1990) Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade. J. Neurosci 10, 3615–3626
    OpenUrlAbstract
    1. Thisse B.,
    2. Thisse C.,
    3. Weston J. A.
    (1995) Novel FGF receptor (Z-FGFR4) is dynamically expressed in mesoderm and neurectoderm during early zebrafish embryogenesis. Dev. Dyn 203, 377–391
    OpenUrlPubMed
    1. Trowe T.,
    2. Klostermann S.,
    3. Baier H.,
    4. Grunewald B.,
    5. Hoffmann H.,
    6. Karlstrom R. O.,
    7. Granato M.,
    8. Haffter P.,
    9. Hammerschmidt M.,
    10. van Eeden F. J. M.,
    11. et al.
    (1996) Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439–450
    OpenUrlAbstract/FREE Full Text
    1. Udin S. B.,
    2. Fawcett J. W.
    (1988) Formation of topographic maps. Annu. Rev. Neurosci 11, 289–327
    OpenUrlCrossRefPubMedWeb of Science
    1. Walter J.,
    2. Kern-Veits B.,
    3. Huf J.,
    4. Stolze B.,
    5. Bonhoeffer F.
    (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696
    OpenUrlAbstract/FREE Full Text
    1. Walz A.,
    2. McFarlane S.,
    3. Brickman Y. G.,
    4. Nurcombe V.,
    5. Bartlett P. F.,
    6. Holt C. E.
    (1997) Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124, 2421–2430
    OpenUrlAbstract
    1. Wassarman K. M.,
    2. Lewandoski M.,
    3. Campbell K.,
    4. Joyner A. L.,
    5. Rubenstein J. L.,
    6. Martinez S.,
    7. Martin G. R.
    (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934
    OpenUrlAbstract
    1. Wurst W.,
    2. Auerbach A. B.,
    3. Joyner A. L.
    (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075
    OpenUrlAbstract
    1. Xu Q.,
    2. Holder N.,
    3. Patient R.,
    4. Wilson S. W.
    (1994) Spatially regulated expression of three receptor tyrosine kinase genes during gastrulation in the zebrafish. Development 120, 287–299
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection
A. Picker, C. Brennan, F. Reifers, J.D. Clarke, N. Holder, M. Brand
Development 1999 126: 2967-2978;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection
A. Picker, C. Brennan, F. Reifers, J.D. Clarke, N. Holder, M. Brand
Development 1999 126: 2967-2978;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992