Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
JOURNAL ARTICLES
Sonic hedgehog regulates the growth and patterning of the cerebellum
N. Dahmane, A. Ruiz-i-Altaba
Development 1999 126: 3089-3100;
N. Dahmane
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Ruiz-i-Altaba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The molecular bases of brain development and CNS malignancies remain poorly understood. Here we show that Sonic hedgehog (Shh) signaling controls the development of the cerebellum at multiple levels. SHH is produced by Purkinje neurons, it is required for the proliferation of granule neuron precursors and it induces the differentiation of Bergmann glia. Blocking SHH function in vivo results in deficient granule neuron and Bergmann glia differentiation as well as in abnormal Purkinje neuron development. Thus, our findings provide a molecular model for the growth and patterning of the cerebellum by SHH through the coordination of the development of cortical cerebellar cell types. In addition, they provide a cellular context for medulloblastomas, childhood cancers of the cerebellum.

Reference

    1. Alder J.,
    2. Cho N. K.,
    3. Hatten M. E.
    (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17, 389–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S. L.,
    2. Rossant J.
    (1994) HNF-3is essential for node and notochord formation in mouse development. Cell 78, 561–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Aruga J.,
    2. Yokota N.,
    3. Hashimoto M.,
    4. Furuichi T.,
    5. Fukuda M.,
    6. Mikoshiba K. A.
    (1994) Novel zinc finger protein, Zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem 63, 1880–1890
    OpenUrlPubMedWeb of Science
    1. Aruga J.,
    2. Nagai T.,
    3. Tokuyama T.,
    4. Hayashizaki Y.,
    5. Okazaki Y.,
    6. Chapman V. M.,
    7. Mikoshiba K.
    (1996) The mouse Zic gene family: homologues of Drosophila pair-rule gene odd-paired. J. Biol. Chem 271, 1043–1047
    OpenUrlAbstract/FREE Full Text
    1. Baptista C. A.,
    2. Hatten M. E.,
    3. Blazeski R.,
    4. Mason C. A.
    (1994) Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12, 243–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Belloni E.,
    2. Muenke M.,
    3. Roessler E.,
    4. Traverso G.,
    5. Siegel-Bartelt J.,
    6. Frumkin A.,
    7. Mitchell H. F.,
    8. Donis-Keller H.,
    9. Helms C.,
    10. Hing A. V.,
    11. Heng H. H. Q.,
    12. Koop B.,
    13. Martindale D.,
    14. Rommens J. M.,
    15. Tsui L.-C.,
    16. Scherer S. W.
    (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genetics 14, 353–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Ben-Arie N.,
    2. Bellen H. J.,
    3. Armstrong D. L.,
    4. McCall A. E.,
    5. Gordadze P. R.,
    6. Guo Q.,
    7. Matzuk M. M.,
    8. Zoghbi H. Y.
    (1997) Math1 is essential for genesis of the cerebellar granule neurons. Nature 390, 169–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Cooper M. K.,
    2. Porter J. A.,
    3. Young K. E.,
    4. Beachy P. A.
    (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607
    OpenUrlAbstract/FREE Full Text
    1. Curran T.,
    2. D'Arcangelo G.
    (1998) Role of Reelin in the control of brain development. Brain Research 26, 285–294
    OpenUrlCrossRefPubMed
    1. Dahmane N.,
    2. Lee J.,
    3. Robins P.,
    4. Heller P.,
    5. Ruiz i Altaba A.
    (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signaling pathway in skin tumors. Nature 389, 876–881
    OpenUrlCrossRefPubMedWeb of Science
    1. D'Ercole J. A.,
    2. Ye P.,
    3. Calikoglu A. S.,
    4. Gutierrez-Ospina G.
    (1996) The role of Insulin-like growth factors in the central nervous system. Mol. Neurobiol 13, 227–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Dehart D. B.,
    2. Lanoue L.,
    3. Tint G. S.,
    4. Sulik K. K.
    (1997) Pathogenesis of malformations in a rodent model for Smith-Lemli-Opitz Syndrome. Amer. J. Med. Genet 68, 328–337
    OpenUrlCrossRefPubMedWeb of Science
    1. Duprez D.,
    2. Fournier-Thibault C.,
    3. Le Douarin N.
    (1998) Sonic hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125, 495–505
    OpenUrlAbstract
    1. Dusart I.,
    2. Airaksinen M. S.,
    3. Sotelo C.
    (1997) Purkinje cell survival and axonal regeneration are age dependent: an In vitro study. J. Neurosci 17, 3710–3726
    OpenUrlAbstract/FREE Full Text
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Mortin S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Rashbass P.,
    3. Schedl A.,
    4. Brenner-Morton S.,
    5. Kawakami A.,
    6. van Heyningen V.,
    7. Jessell T. M.,
    8. Briscoe J.
    (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Fan C.-M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Chang D. T.,
    5. Beachy P. A.,
    6. Tessier-Lavigne M.
    (1995) Long-range sclerotome induction by Sonic hedgehog direct role of the amino terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81, 457–465
    OpenUrlCrossRefPubMedWeb of Science
    1. Farese R. V. J.,
    2. Herz J.
    (1998) Cholesterol metabolism and embryogenesis. Trends Genet 14, 115–120
    OpenUrlCrossRefPubMedWeb of Science
    1. Feng L.,
    2. Hatten M. E.,
    3. Heintz N.
    (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895–908
    OpenUrlCrossRefPubMedWeb of Science
    1. Fischer M.,
    2. Trimmer P.,
    3. Ruthel G.
    (1993) Bergmann glia require continuous association with Purkinje cells for normal phenotype expression. Glia 8, 172–182
    OpenUrlCrossRefPubMed
    1. Fruttiger M.,
    2. Calver A. R.,
    3. Kruger W. H.,
    4. Mudhar H. S.,
    5. Michalovich D.,
    6. Takakura N.,
    7. Nishikawa S.,
    8. Richardson W. D.
    (1996) PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17, 1117–1131
    OpenUrlCrossRefPubMedWeb of Science
    1. Fruttiger M.,
    2. Karlsson L.,
    3. Hall A. C.,
    4. Abramsson A.,
    5. Calver A. R.,
    6. Boström H.,
    7. Willetts K.,
    8. Bertold C.-H.,
    9. Heath J. K.,
    10. Betsholtz C.,
    11. Richardson W. D.
    (1999) Defective oligodendrocyte development andsevere hypomyelination in PDGF-A knockout mice. Development 126, 457–467
    OpenUrlAbstract
    1. Furley A. J.,
    2. Morton S. B.,
    3. Manalo D.,
    4. Karagogeos D.,
    5. Dodd J.,
    6. Jessell T. M.
    (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61, 157–170
    OpenUrlCrossRefPubMedWeb of Science
    1. Gailani M. R.,
    2. Stahle-Backdahl M.,
    3. Leffell D. J.,
    4. Glynn M. Zaphiropoulos P. G.,
    5. Pressman C.,
    6. Unden A. B.,
    7. Dean M.,
    8. Brash D. E.,
    9. Bale A. E.,
    10. Toftgard R.
    (1991) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet 14, 7–8
    1. Gao W.-Q.,
    2. Heintz N.,
    3. Hatten M. E.
    (1991) Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6, 705–715
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldowitz D.,
    2. Cushing R. C.,
    3. Laywell E.,
    4. D'Arcangelo G.,
    5. Shelon M.,
    6. Sweet H.O.,
    7. Davisson M.,
    8. Steindler D.,
    9. Curran T.
    (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci 17, 8767–8777
    OpenUrlAbstract/FREE Full Text
    1. Goodrich L. V.,
    2. Johnson R. L.,
    3. Milenkovic L.,
    4. McMahon J. A.,
    5. Scott M. P.
    (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 10, 301–312
    OpenUrlAbstract/FREE Full Text
    1. Goodrich L. V.,
    2. Milenkovic L.,
    3. Higgins K. M.,
    4. Scott M. P.
    (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113
    OpenUrlAbstract/FREE Full Text
    1. Hahn H.,
    2. Wicking C.,
    3. Zaphiropoulos P. G.,
    4. Gailani M. R.,
    5. Shanley S.,
    6. Chidambaram A.,
    7. Vorechovsky I.,
    8. Holmberg E.,
    9. Unden A. B.,
    10. Gillies S.,
    11. Negus K.,
    12. Smyth I.,
    13. Pressman C.,
    14. Leffell D. J.,
    15. Gerrard B.,
    16. Goldstein A. M.,
    17. Dean M.,
    18. Toftgard R.,
    19. Chenevix-Trench G.,
    20. Wainwright B.,
    21. Bale A. E.
    (1996) Mutations ofthe human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatten M. E.
    (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol 100, 384–396
    OpenUrlAbstract/FREE Full Text
    1. Hatten M. E.,
    2. Heintz N.
    (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev. Neurosci 18, 385–408
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatten M. E.,
    2. Alder J.,
    3. Zimmerman K.,
    4. Heintz N.
    (1997) Genes involved in cerebellar cell specification and differentiation. Current Opin. Neurobiol 7, 40–47
    OpenUrlCrossRefPubMedWeb of Science
    1. Herrup K.,
    2. Kuemerle B.
    (1997) The compartmentalization of the cerebellum. Annu. Rev.Neurosci 20, 61–90
    OpenUrlCrossRefPubMedWeb of Science
    1. Howell B. W.,
    2. Hawkes R.,
    3. Soriano P.,
    4. Cooper J. A.
    (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Huang Z.,
    2. Kunes S.
    (1996) Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86, 411–422
    OpenUrlCrossRefPubMedWeb of Science
    1. Incardona J. P.,
    2. Gaffield W.,
    3. Kapur R. P.,
    4. Roelink H.
    (1998) The teratogenic veratrum alkaloid cyclopamine inhibits Sonic Hedgehog signal transduction. Development 125, 3553–3562
    OpenUrlAbstract
    1. Jankovski A.,
    2. Rossi F.,
    3. Sotelo C.
    (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur. J. Neurosci 8, 2308–2319
    OpenUrlCrossRefPubMedWeb of Science
    1. Jensen A. M.,
    2. Wallace V. A.
    (1997) Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124, 363–371
    OpenUrlAbstract
    1. Johnson R. L.,
    2. Rothman A. L.,
    3. Xie J.,
    4. Goodrich L. V.,
    5. Bare J. W.,
    6. Bonifas J. M.,
    7. Quinn A. G.,
    8. Myers R. M.,
    9. Cox D. R.,
    10. Epstein E. H. Jr.,
    11. Scott M. P.
    (1996) Human homolog of Patched, a candidate gene for basal cell nevus syndrome. Science 272, 1668–1671
    OpenUrlAbstract
    1. Kelly R. I.,
    2. Roessler E.,
    3. Hennekkam R. C. M.,
    4. Feldman G. L.,
    5. Kosaki K.,
    6. Jones M. C.,
    7. Palumbos J. C.,
    8. Muenke M.
    (1996) Holoprosencephaly in RSH/Smit-Lemli-Opitz Syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?. Am. J. Med. Genet 66, 478–484
    OpenUrlCrossRefPubMedWeb of Science
    1. Kozmik Z.,
    2. Sure U.,
    3. Ruedi D.,
    4. Busslinger M.,
    5. Aguzzi A.
    (1995) Deregulated expression of PAX5 in medulloblastoma. Proc. Natl. Acad. Sci. USA 92, 5709–5713
    OpenUrlAbstract/FREE Full Text
    1. Krauss S.,
    2. Concordet J.-P.,
    3. Ingham P. W.
    (1993) A functionally conserved homolog of the Drosophila segment polarity gene hedgehog is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuhar S. G.,
    2. Feng L.,
    3. Vidan S.,
    4. Ross M. E.,
    5. Hatten M. E.,
    6. Heintz N.
    (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117, 97–104
    OpenUrlAbstract/FREE Full Text
    1. Lanoue L.,
    2. Dehart D. B.,
    3. Hinsdale M. E.,
    4. Maeda N.,
    5. Tint G. S.,
    6. Sulik K. K.
    (1997) Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: further evidence for a link to Sonic hedgehog. Am.J. Med. Genet 73, 24–31
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J.,
    2. Platt K.,
    3. Censullo P.,
    4. Ruiz i Altaba A.
    (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552
    OpenUrlAbstract
    1. Lin J. C.,
    2. Cepko C. L.
    (1998) Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in the developing chick cerebellum. J. Neurosci 18, 9342–9353
    OpenUrlAbstract/FREE Full Text
    1. Marigo V.,
    2. Johnson R. L.,
    3. Vortkamp A.,
    4. Tabin C. J.
    (1996) Sonic hedgehog differentially regulates expression of Gli and Gli3 during limb development. Dev. Biol 180, 273–283
    OpenUrlCrossRefPubMedWeb of Science
    1. Miao N.,
    2. Wang M.,
    3. Ott J. A.,
    4. D'Alessandro J. S.,
    5. Woolf T. M.,
    6. Bumcrot D. A.,
    7. Mahanthappa N. K.,
    8. Pang K.
    (1997) Sonic Hedgehog promotes the survival of specific CNS neuron populations and protects these cells form toxic insult in vitro. J. Neurosci 17, 5891–5899
    OpenUrlAbstract/FREE Full Text
    1. Millen K. J.,
    2. Hui C.-C.,
    3. Joyner A. L.
    (1995) A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development 121, 3935–3945
    OpenUrlAbstract
    1. Miyata T.,
    2. Nakajima K.,
    3. Mikoshiba K.,
    4. Ogawa M.
    (1997) Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci 17, 3599–3609
    OpenUrlAbstract/FREE Full Text
    1. Ness G. C.,
    2. Lopez D.,
    3. Borrego O.,
    4. Gilbert-Barness E.
    (1997) Increased expression of low-density lipoprotein receptors in a Smith-Lemli-Opitz infant with elevated bilirubin levels. Am. J. Med. Genet 68, 294–299
    OpenUrlCrossRefPubMed
    1. Nothias F.,
    2. Fishell G.,
    3. Ruiz i Altaba A.
    (1998) Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Curr.Biol 8, 459–462
    OpenUrlCrossRefPubMedWeb of Science
    1. Oro A. E.,
    2. Higgins K. M.,
    3. Hu Z.,
    4. Bonifas J. M.,
    5. Epstein E. H. Jr.,
    6. Scott M. P.
    (1997) Basal cell carcinomas in mice overexpressing Sonic hedgehog. Science 276, 817–821
    OpenUrlAbstract/FREE Full Text
    1. Poncet C.,
    2. Soula C.,
    3. Trousse F.,
    4. Kan P.,
    5. Hirsinger E.,
    6. Pourquie O.,
    7. Duprat A.-M.,
    8. Cochard P.
    (1996) Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech. Dev 60, 13–32
    OpenUrlCrossRefPubMedWeb of Science
    1. Porter J. A.,
    2. Young K. E.,
    3. Beachy P. A.
    (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–269
    OpenUrlAbstract/FREE Full Text
    1. Pringle N. P.,
    2. Yu W.-P.,
    3. Guthrie S.,
    4. Roelink H.,
    5. Lumsden A.,
    6. Peterson A. C.,
    7. Richardson W. D.
    (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and Sonic hedgehog. Dev. Biol 177, 30–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Reifenberger J.,
    2. Wolter M.,
    3. Weber R. G.,
    4. Mgahed M.,
    5. Ruzicka T.,
    6. Lichter P.,
    7. Reifenberger G.
    (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58, 1798–1803
    OpenUrlAbstract/FREE Full Text
    1. Repetto M.,
    2. Maziere J. C.,
    3. Citadelle D.,
    4. Dupus R.,
    5. Meier M.,
    6. Biade S.,
    7. Quiec D.,
    8. Roux C.
    (1990) Teratogenic effect of the cholesterol synthesis inhibitor AY 9944 on rat embryos in vitro. Teratology 42, 611–618
    OpenUrlCrossRefPubMedWeb of Science
    1. Rio C.,
    2. Rieff H. I.,
    3. Qi P.,
    4. Corfas G.
    (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T. M.,
    11. Dodd J.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Roessler E.,
    2. Belloni E.,
    3. Gaudenz K.,
    4. Jay P.,
    5. Berta P.,
    6. Scherer S. W.,
    7. Tsui L.-C.,
    8. Muenke M.
    (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genetics 14, 357–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1994) Coexpression of HNF-3and Isl-1/2 and mixed distribution of ventral cell types in the early neural tube. Int. J. Dev. Biol 40, 1081–1088
    OpenUrl
    1. Ruiz i Altaba A.
    (1997) Catching a Gli-mpse of hedgehog. Cell 90, 193–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1998) Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125, 2203–2212
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T. M.,
    3. Roelink H.
    (1995) Restrictions to Floor Plate Induction by hedgehog and Winged Helix Genes in the Neural Tube of Frog Embryos. Mol. Cell. Neurosci 6, 106–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Salen G.,
    2. Shefer S.,
    3. Batta A. K.,
    4. Tint G. S.,
    5. Xu G.,
    6. Honda A.,
    7. Irons M.,
    8. Elias E. R.
    (1996) Abnormal cholesterol biosynthesis in the Smith-Lemli-Opitz syndrome. J. Lipid Res 37, 1169–1180
    OpenUrlAbstract
    1. Sasaki H.,
    2. Hui C. C.,
    3. Nakafuku M.,
    4. Kondoh H.
    (1997) A binding site for Gli proteins is essential for HNF-3floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322
    OpenUrlAbstract
    1. Smeyne R. J.,
    2. Chu T.,
    3. Lewin A.,
    4. Bian F. S.,
    5. -Crisman S.,
    6. Kunsch C.,
    7. Lira S. A.,
    8. Oberdick J.
    (1995) Local control of granule cell generation by cerebellar Purkinje cells. Molec. Cell. Neurosci 6, 230–251
    OpenUrlCrossRefPubMedWeb of Science
    1. Sockanathan S.,
    2. Jessell T. M.
    (1998) Motor neuron-derived retinoid signalng specifies the subtype identity of spinal motor neurons. Cell 94, 503–514
    OpenUrlCrossRefPubMedWeb of Science
    1. Sotelo C.,
    2. Alvarado-Mallart R.-M.,
    3. Frain M.,
    4. Vernet M.
    (1994) Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J. Neurosci 14, 124–133
    OpenUrlAbstract
    1. St.-Jacques B.,
    2. Dassule H. R.,
    3. Karavanova I.,
    4. Botchkarev V. A.,
    5. Li J.,
    6. Danielian P. S.,
    7. McMahon J. A.,
    8. Lewis P. M.,
    9. Paus R.,
    10. McMahon A. P.
    (1998) Sonic hedgehog signaling is essential for hair development. Curr. Biol 8, 1058–1068
    OpenUrlCrossRefPubMedWeb of Science
    1. Sun T.,
    2. Pringle N. P.,
    3. Hardy A. P.,
    4. Richardson W. D.,
    5. Smith H. K.
    (1998) Pax6 influences the time and site of origin of glial precursors in the central neural tube. Mol. Cell. Neurosci 12, 228–239
    OpenUrlCrossRefPubMedWeb of Science
    1. Tessier-Lavigne M.,
    2. Placzek M.,
    3. Lumsden A. G.,
    4. Dodd J.,
    5. Jessell T. M.
    (1988) Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778
    OpenUrlCrossRefPubMed
    1. Traiffort E.,
    2. Charytoniuk D. A.,
    3. Faure H.,
    4. Ruat M.
    (1998) Regional distribution of Sonic Hedgehog, Patched, and Smoothened mRNA in the adult rat brain. J. Neurochem 70, 1327–1330
    OpenUrlPubMedWeb of Science
    1. Trojanowski J. Q.,
    2. Tohyama T.,
    3. Lee V. M.-Y.
    (1992) Medulloblastomas and related primitive neuroectodermal brain tumors of childhood recapitulate molecular milestones in the maturation of neuroblasts. Mol. Chem. Neuropath 17, 121–135
    OpenUrlPubMedWeb of Science
    1. Weinstein D. C.,
    2. Ruiz i Altaba A.,
    3. Chen W. S.,
    4. Hoodless P.,
    5. Prezioso V. R.,
    6. Jessell T. M.,
    7. Darnell J. E. Jr
    (1994) The winged helix transcription factor HNF-3is required for notochord development in the mouse embryo. Cell 78, 575–588
    OpenUrlCrossRefPubMedWeb of Science
    1. Wechsler-Reya R. J.,
    2. Scott M. P.
    (1999) Control of neuronal precursors proliferation in the cerebellum by Sonic hedgehog. Neuron 22, 103–114
    OpenUrlCrossRefPubMedWeb of Science
    1. Xie J.,
    2. Murone M.,
    3. Luoh S. M.,
    4. Ryan A.,
    5. Gu Q.,
    6. Zhang C.,
    7. Bonifas J. M.,
    8. Lam C. W.,
    9. Hynes M.,
    10. Goddard A.,
    11. Rosenthal A.,
    12. Epstein E. H. Jr.,
    13. de Sauvage F. J.
    (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Yang X. W.,
    2. Zhong R.,
    3. Heintz N.
    (1996) Granule cell specification in the developing mouse brain as defined by expression of the zinc finger transcription factor RU49. Development 122, 555–566
    OpenUrlAbstract
    1. Ye W.,
    2. Shimamura K.,
    3. Rubenstein J. L. R.,
    4. Hynes M. A.,
    5. Rosenthal A.
    (1998) FGF and Shh signals control Dopaminergic and Serotonergic cell fate in the anterior neural plate. Cell 93, 755–766
    OpenUrlCrossRefPubMedWeb of Science
    1. Yokota N.,
    2. Aruga J.,
    3. Takai S.,
    4. Yamada K.,
    5. Hamazaki M.,
    6. Iwase T.,
    7. Sugimura H.,
    8. Mikoshiba K.
    (1996) Predominant expression of human Zic in cerebellar granule cell lineage and medulloblastoma. Cancer Res 56, 377–383
    OpenUrlAbstract/FREE Full Text
    1. Yoneshima H.,
    2. Nagata E.,
    3. Matsumoto M.,
    4. Yamada M.,
    5. Nakajima K.,
    6. Miyata T.,
    7. Ogawa M.,
    8. Mikoshiba K.
    (1997) A novel neurological mutant mice, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/Reelin. Neurosci. Res 29, 217–223
    OpenUrlCrossRefPubMedWeb of Science
    1. Yuasa S.,
    2. Kitoh J.,
    3. Oda S.,
    4. Kawamura K.
    (1993) Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat. Embryol 188, 317–329
    OpenUrlPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sonic hedgehog regulates the growth and patterning of the cerebellum
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Sonic hedgehog regulates the growth and patterning of the cerebellum
N. Dahmane, A. Ruiz-i-Altaba
Development 1999 126: 3089-3100;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Sonic hedgehog regulates the growth and patterning of the cerebellum
N. Dahmane, A. Ruiz-i-Altaba
Development 1999 126: 3089-3100;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

An interview with Swathi Arur

Swathi Arur joined the team at Development as an Academic Editor in 2020. Her lab uses multidisciplinary approaches to understand female germline development and fertility. We met with her over Zoom to hear more about her life, her career and her love for C. elegans.


Jim Wells and Hanna Mikkola join our team of Editors

We are pleased to welcome James (Jim) Wells and Hanna Mikkola to our team of Editors. Jim joins us a new Academic Editor, taking over from Gordan Keller, and Hanna joins our team of Associate Editors. Find out more about their research interests and areas of expertise.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

“I’d heard of Read & Publish deals and knew that many universities, including mine, had signed up to them but I had not previously understood the benefits that these deals bring to authors who work at those universities.”

Professor Sally Lowell (University of Edinburgh) shares her experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Brandon Carpenter talks about how inherited histone methylation defines the germline versus soma decision in C. elegans. 

Sign up to join our next session:

10 March
Time: TBC
Chaired by: Thomas Lecuit

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992