Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Gli proteins encode context-dependent positive and negative functions: implications for development and disease
A. Ruiz i Altaba
Development 1999 126: 3205-3216;
A. Ruiz i Altaba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Several lines of evidence implicate zinc finger proteins of the Gli family in the final steps of Hedgehog signaling in normal development and disease. C-terminally truncated mutant GLI3 proteins are also associated with human syndromes, but it is not clear whether these C-terminally truncated Gli proteins fulfil the same function as full-length ones. Here, structure-function analyses of Gli proteins have been performed using floor plate and neuronal induction assays in frog embryos, as well as induction of alkaline phosphatase (AP) in SHH-responsive mouse C3H10T1/2 (10T1/2) cells. These assays show that C-terminal sequences are required for positive inducing activity and cytoplasmic localization, whereas N-terminal sequences determine dominant negative function and nuclear localization. Analyses of nuclear targeted Gli1 and Gli2 proteins suggest that both activator and dominant negative proteins are modified forms. In embryos and COS cells, tagged Gli cDNAs yield C-terminally deleted forms similar to that of Ci. These results thus provide a molecular basis for the human Polydactyly type A and Pallister-Hall Syndrome phenotypes, derived from the deregulated production of C-terminally truncated GLI3 proteins. Analyses of full-length Gli function in 10T1/2 cells suggest that nuclear localization of activating forms is a regulated event and show that only Gli1 mimics SHH in inducing AP activity. Moreover, full-length Gli3 and all C-terminally truncated forms act antagonistically whereas Gli2 is inactive in this assay. In 10T1/2 cells, protein kinase A (PKA), a known inhibitor of Hh signaling, promotes Gli3 repressor formation and inhibits Gli1 function. Together, these findings suggest a context-dependent functional divergence of Gli protein function, in which a cell represses Gli3 and activates Gli1/2 prevents the formation of repressor Gli forms to respond to Shh. Interpretation of Hh signals by Gli proteins therefore appears to involve a fine balance of divergent functions within each and among different Gli proteins, the misregulation of which has profound biological consequences.

Reference

    1. Akimaru H.,
    2. Chen Y.,
    3. Dai P.,
    4. Hou D. X.,
    5. Nonaka M.,
    6. Smolik S. M.,
    7. Armstrong S.,
    8. Goodman R. H.,
    9. Ishii S.
    (1997) Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signaling. Nature 386, 735–738
    OpenUrlCrossRefPubMedWeb of Science
    1. Alexandre C.,
    2. Jacinto A.,
    3. Ingham P. W.
    (1996) Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the Cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev 10, 2003–2013
    OpenUrlAbstract/FREE Full Text
    1. Aza-Blanc P.,
    2. Ramírez-Weber F.-A.,
    3. Laget M.-P.,
    4. Schwartz C.,
    5. Kornberg T.
    (1997) Proteolysis that is inhibited by hedgehog targets cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053
    OpenUrlCrossRefPubMedWeb of Science
    1. Brewster R.,
    2. Lee J.,
    3. Ruiz i Altaba A.
    (1998) Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 398, 579–583
    OpenUrl
    1. Buscher D.,
    2. Bosse B.,
    3. Heymer J.,
    4. Ruther U.
    (1997) Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development. Mech. Dev 62, 175–182
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen Y.,
    2. Gallaher N.,
    3. Goodman R. H.,
    4. Smolik S. M.
    (1998) Protein kinase A directly regulates activity and proteolysis of cubitus interruptus. Proc. Natl. Acad. Sci. USA 95, 2349–2354
    OpenUrlAbstract/FREE Full Text
    1. Clegg C. H.,
    2. Correll L. A.,
    3. Cadd G. G.,
    4. McKnight G. S.
    (1987) Inhibition of intracellular cAMP-dependent protein kinase using mutant genes of the regulatory type I subunit. J. Biol. Chem 262, 13111–13119
    OpenUrlAbstract/FREE Full Text
    1. Concordet J.-P.,
    2. Lewis K. E.,
    3. Moore J. W.,
    4. Goodrich L. V.,
    5. Johnson R. L.,
    6. Scott M. P.,
    7. Ingham P. W.
    (1996) Spatial distribution of a zebrafish patched homologue reflects the roles of sonic hedgehog and proteins kinase A in neural tube and somite patterning. Development 122, 2835–2846
    OpenUrlAbstract
    1. Dahmane N.,
    2. Lee J.,
    3. Robins P.,
    4. Heller P.,
    5. Ruiz i Altaba A.
    (1997) Activation of Gli1 and the Sonic Hedgehog Signaling Pathway in Skin Tumors. Nature 389, 876–881
    OpenUrlCrossRefPubMedWeb of Science
    1. Dahmane N.,
    2. Ruiz i Altaba A.
    (1999) Sonic hedgehog regulates the development of the cerebellum. Development 126, 3089–3100
    OpenUrlAbstract
    1. Dai P.,
    2. Akimaru H.,
    3. Tanaka Y.,
    4. Maekawa T.,
    5. Nakafuku M.,
    6. Ishii S.
    (1999) Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by Gli3. J.Biol. Chem 274, 8143–8152
    OpenUrlAbstract/FREE Full Text
    1. Ding Q.,
    2. Motoyama J.,
    3. Gasca S.,
    4. Mo R.,
    5. Sasaki H.,
    6. Rossant J.,
    7. Hui C. C.
    (1998) Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125, 2533–2543
    OpenUrlAbstract
    1. Eriscon J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of Sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Fan C. M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Chang D. T.,
    5. Beachy P. A.,
    6. Tessier-Lavigne M.
    (1995) Long range sclerotome induction by sonic hedgehog: direct role of the amino-acid terminal cleavage product and modulation by cyclic AMP signaling pathway. Cell 81, 457–465
    OpenUrlCrossRefPubMedWeb of Science
    1. Goodrich L. V.,
    2. Milenkovic L.,
    3. Higgins K. M.,
    4. Scott M. P.
    (1997) Altered Neural Cell Fates and Medulloblastoma in Mouse patched Mutants. Science 277, 1109–1113
    OpenUrlAbstract/FREE Full Text
    1. Hammerschmidt M.,
    2. Bitgood M. J.,
    3. McMahon A.
    (1996) Proteinkinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 10, 647–658
    OpenUrlAbstract/FREE Full Text
    1. Hepker J.,
    2. Wang Q. T.,
    3. Motzny C. K.,
    4. Holmgren R.,
    5. Orenic T. V.
    (1997) Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124, 549–558
    OpenUrlAbstract
    1. Hughes D. C.,
    2. Allen J.,
    3. Morley G.,
    4. Sutherland K.,
    5. Ahmed W.,
    6. Prosser J.,
    7. Lettice L.,
    8. Allan G.,
    9. Mattei M.-G.,
    10. Farrall M.,
    11. Hill R. E.
    (1997) Cloning and sequencing of the mouse Gli2 gene: localization to the dominant hemimelia critical region. Genomics 39, 205–215
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C. C.,
    2. Joyner A. L.
    (1993) A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics 3, 241–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C.-C.,
    2. Slusarski D.,
    3. Platt K. A.,
    4. Holmgren R.,
    5. Joyner A. L.
    (1994) Expression of Three Mouse Homologs of the Drosophila Segment Polarity Gene cubitus interruptus, Gli, Gli-2, and Gli-3, in Ectoderm and Mesoderm-Derived Tissues Suggests Multiple Roles during Postimplantation Development. Dev. Biol 162, 402–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Stone D. M.,
    3. Dowd M.,
    4. Pitts-Meek S.,
    5. Goddard A.,
    6. Gurney A.,
    7. Rosenthal A.
    (1997) Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli1. Neuron 19, 15–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Ingham P. W.
    (1998) Transducing Hedgehog. The story so far. EMBO J 17, 3505–3511
    OpenUrlAbstract
    1. Jan E.,
    2. Yoon J. W.,
    3. Walterhouse D.,
    4. Iannaccone P.,
    5. Goodwin E. B.
    (1997). Conservation of the C.elegans tra-2 3-UTR translational control. EMBO J 16, 6301–6313
    OpenUrlCrossRefPubMedWeb of Science
    1. Kang S.,
    2. Graham J. M.,
    3. Olney A. H.,
    4. Biesecker L. G.
    (1997) Gli3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nature Genet 15, 266–268
    OpenUrlCrossRefPubMedWeb of Science
    1. Katagiri T.,
    2. Yamaguchi A.,
    3. Komaki M.,
    4. Abe E.,
    5. Takahashi N.,
    6. Ikeda T.,
    7. Rosen V.,
    8. Wozney J. M.,
    9. Fujisawa-Sehara A.,
    10. Suda T.
    (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol 127, 1755–1766
    OpenUrlAbstract/FREE Full Text
    1. Kelsey Motzny C.,
    2. Holmgren R.
    (1995) The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev 52, 137–150
    OpenUrlCrossRefPubMedWeb of Science
    1. Kinto N.,
    2. Iwamoto M.,
    3. Enomoto-Iwamoto M.,
    4. Noji S.,
    5. Ohuchi H.,
    6. YoshiokaKataoka H.,
    7. Wada Y.,
    8. Yuhao G.,
    9. Takahashi H. E.,
    10. Yoshiki S.,
    11. Yamaguchi A.
    (1997) Fibroblasts expressing Sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Lett 404, 319–323
    OpenUrlCrossRefPubMedWeb of Science
    1. Kinzler K. W.,
    2. Bigner S. H.,
    3. Bigner D. D.,
    4. Trent J. M.,
    5. Law M. L.,
    6. O'Brien S. J.,
    7. Wong A. J.,
    8. Vogelstein B.
    (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236, 70–73
    OpenUrlAbstract/FREE Full Text
    1. Kinzler K. W.,
    2. Ruppert J. M.,
    3. Bigner S. H.,
    4. Vogelstein B.
    (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332, 371–374
    OpenUrlCrossRefPubMed
    1. Krishnan V.,
    2. Pereira F. A.,
    3. Qiu Y.,
    4. Chen C.-H.,
    5. Beachy P. A.,
    6. Tsai S. Y.,
    7. Tsai M.-J.
    (1997) Mediation of Sonic Hedgehog-Induced Expression of COUP-TFII by a Protein phosphatase. Science 278, 1947–1949
    OpenUrlAbstract/FREE Full Text
    1. Lee J.,
    2. Platt K.,
    3. Censullo P.,
    4. Ruiz i Altaba A.
    (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552
    OpenUrlAbstract
    1. Lessing D.,
    2. Nusse R.
    (1998) Expression of wingless in the Drosophila embryo: a conserved cis-acting element lacking conserved Ci-binding sites is required for patched-mediated repression. Development 125, 1469–1476
    OpenUrlAbstract
    1. Liu F.,
    2. Massague J.,
    3. Ruiz i Altaba A.
    (1998) C-terminally truncated GLI3 proteins associate with Smads. Nature Genetics 20, 325–326
    OpenUrlCrossRefPubMedWeb of Science
    1. Marigo V.,
    2. Johnson R. L.,
    3. Vortkamp A.,
    4. Tabin C. J.
    (1996) Sonic hedgehog differentiatlly regulates expression of Gli and Gli3 during limb development. Dev. Biol 180, 273–283
    OpenUrlCrossRefPubMedWeb of Science
    1. Marine J.-C.,
    2. Bellefroid E. J.,
    3. Pendeville H.,
    4. Martial J. A.,
    5. Pieler T.
    (1997) A role for Xenopus Gli-type zinc finger proteins in early embryonic patterning of the mesoderm and neuroectoderm. Mech. Dev 63, 211–225
    OpenUrlCrossRefPubMedWeb of Science
    1. Martí E.,
    2. Bumcrot D. A.,
    3. Takada R.,
    4. McMahon A. P.
    (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325
    OpenUrlCrossRefPubMed
    1. Masuya H.,
    2. Sagai T.,
    3. Wakana S.,
    4. Moriwaki K.,
    5. Shiroishi T.
    (1995) A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 13, 1645–1653
    OpenUrl
    1. Matise M. P.,
    2. Epstein D. J.,
    3. Park H. L.,
    4. Platt K. A.,
    5. Joyner A. L.
    (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770
    OpenUrlAbstract
    1. Mo R.,
    2. Freer A. M.,
    3. Zinyk D. L.,
    4. Crackower M. A.,
    5. Michaud J.,
    6. Heng H. H.-Q.,
    7. Chik K. W.,
    8. Shi X.-M.,
    9. Tsui L.-C.,
    10. Cheng S. H.,
    11. Joyner A. L.,
    12. Hui C.-C.
    (1997) Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123
    OpenUrlAbstract
    1. Murone M.,
    2. Rosenthal A.,
    3. de Sauvage F. J.
    (1999) Sonic hedgehog signlaing by the Patched-Smoothened receptor complex. Curr. Biol 9, 76–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohlmeyer J. T.,
    2. Kalderon D.
    (1997) Dual pathways for induction of wingless expression by protein kinase A and Hedgehog expression in Drosophila embryos. Genes Dev 11, 2250–2258
    OpenUrlAbstract/FREE Full Text
    1. Orellana S. A.,
    2. McKnight G. S.
    (1992) Mutations in the catalytic subunit of cAMP-dependent proteins kinase result in unregulated biological activity. Proc. Natl. Acad. Sci. USA 89, 4726–4730
    OpenUrlAbstract/FREE Full Text
    1. Platt K. A.,
    2. Michaud J.,
    3. Joyner A. L.
    (1997) Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mech. Dev 62, 121–135
    OpenUrlCrossRefPubMedWeb of Science
    1. Radhakrishna U.,
    2. Wild A.,
    3. Grzeschik K.-H.,
    4. Antonarakis S. E.
    (1997) Mutation in Gli3 in postaxial polydactyly type A. Nature Genetics 17, 269–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Reifenberger J.,
    2. Wolter M.,
    3. Weber R. G.,
    4. Mgahed M.,
    5. Ruzicka T.,
    6. Lichter P.,
    7. Reifenberger G.
    (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58, 1798–1803
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.
    (1997) Catching a Gli-mpse of hedgehog. Cell 90, 193–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1998) Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125, 2203–2212
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T. M.,
    3. Roelink H.
    (1995) Restrictions to Floor Plate Induction by hedgehog and Winged Helix Genes in the Neural Tube of Frog Embryos. Mol. Cell. Neurosci 6, 106–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruppert J. M.,
    2. Kinzler K. W.,
    3. Wong A. J.,
    4. Bigner S. H.,
    5. Kao F. T.,
    6. Law M. L.,
    7. Seuanez H. N.,
    8. O'Brien S. J.,
    9. Vogelstein B.
    (1988) The Gli-Kruppel family of human genes. Mol. Cell Biol 8, 3104–3113
    OpenUrlAbstract/FREE Full Text
    1. Ruppert J. M.,
    2. Vogelstein B.,
    3. Arheden K.,
    4. Kinzler K. W.
    (1990) GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol. Cell Biol 10, 5408–5415
    OpenUrlAbstract/FREE Full Text
    1. Ruppert J. M.,
    2. Vogelstein B.,
    3. Kinzler K. W.
    (1991) The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol. Cell. Biol 11, 1724–1728
    OpenUrlAbstract/FREE Full Text
    1. Sasaki H.,
    2. Hui C. C.,
    3. Nakafuku M.,
    4. Kondoh H.
    (1997) A binding site for Gli proteins is essential for HNF-3floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322
    OpenUrlAbstract
    1. Shin S. H.,
    2. Kogerman P.,
    3. Lindstrom E.,
    4. Töftgard R.,
    5. Biesecker L. G.
    (1999) Gli3 mutations in human disorders mimic Drosophila cubitus interruptus proteins functions and localizations. Proc. Natl. Acad. Sci. USA 96, 2880–2884
    OpenUrlAbstract/FREE Full Text
    1. Tanimura A.,
    2. Dan Shingo,
    3. Yoshida M.
    (1998) Cloning of novel isoforms of the human Gli2 oncogene and their activities to enhance Tax-dependent transcription of the human T-cell leukemia virus type 1 genome. J. Virol 72, 3958–3964
    OpenUrlAbstract/FREE Full Text
    1. Turner D. L.,
    2. Weintraub H.
    (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. GenesDev 8, 1434–1447
    OpenUrlAbstract/FREE Full Text
    1. von Ohlen T.,
    2. Lessing D.,
    3. Nusse R.,
    4. Hooper J. E.
    (1997) Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA binding protein. Proc. Natl. Acad. Sci. USA 94, 2404–2409
    OpenUrlAbstract/FREE Full Text
    1. Vortkamp A.,
    2. Gessler M.,
    3. Grzeschik K.-H.
    (1991) GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540
    OpenUrlCrossRefPubMedWeb of Science
    1. Walterhouse D.,
    2. Ahmed M.,
    3. Slusarski D.,
    4. Kalamaras J.,
    5. Boucher D.,
    6. Holmgren R.,
    7. Iannaccone P.
    (1993) gli, a Zinc Finger Transcription Factor and Oncogene, Is Expressed During Normal Mouse Development. Dev. Dyn 196, 91–102
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gli proteins encode context-dependent positive and negative functions: implications for development and disease
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Gli proteins encode context-dependent positive and negative functions: implications for development and disease
A. Ruiz i Altaba
Development 1999 126: 3205-3216;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Gli proteins encode context-dependent positive and negative functions: implications for development and disease
A. Ruiz i Altaba
Development 1999 126: 3205-3216;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992