Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum
L. Sussel, O. Marin, S. Kimura, J.L. Rubenstein
Development 1999 126: 3359-3370;
L. Sussel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O. Marin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Kimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.L. Rubenstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The telencephalon is organized into distinct longitudinal domains: the cerebral cortex and the basal ganglia. The basal ganglia primarily consists of a dorsal region (striatum) and a ventral region (pallidum). Within the telencephalon, the anlage of the pallidum expresses the Nkx2.1 homeobox gene. A mouse deficient in Nkx2.1 function does not form pallidal structures, lacks basal forebrain TrkA-positive neurons (probable cholinergic neurons) and has reduced numbers of cortical cells expressing GABA, DLX2 and calbindin that migrate from the pallidum through the striatum and into the cortex. We present evidence that these phenotypes result from a ventral-to-dorsal transformation of the pallidal primordium into a striatal-like anlage.

Reference

    1. Acampora D.,
    2. Avantaggiato V.,
    3. Tuorto F.,
    4. Simeone A.
    (1997) Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124, 3639–3650
    OpenUrlAbstract
    1. Alvarez-Bolado G.,
    2. Schwarz M.,
    3. Gruss P.
    (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J. Comp. Neurol 355, 237–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Anderson S. A.,
    2. Eisenstat D. D.,
    3. Shi L.,
    4. Rubenstein J. L. R.
    (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476
    OpenUrlAbstract/FREE Full Text
    1. Anderson S. A.,
    2. Qiu M.,
    3. Bulfone A.,
    4. Eisenstat D. D.,
    5. Meneses J.,
    6. Pedersen R.,
    7. Rubenstein J. L. R.
    (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Barth K. A.,
    2. Wilson S. W.
    (1995). Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755–1768
    OpenUrlAbstract
    1. Belluscio L.,
    2. Gold G. H.,
    3. Nemes A.,
    4. Axel R.
    (1998) Mice deficient in G(olf) are anosmic. Neuron 20, 69–81
    OpenUrlCrossRefPubMedWeb of Science
    1. Bhide P. G.
    (1996) Cell cycle kinetics in the embryonic mouse corpus striatum. J.Comp. Neurol 374, 506–522
    OpenUrlCrossRefPubMedWeb of Science
    1. Briscoe J.,
    2. Sussel L.,
    3. Serup P.,
    4. Hartigan-O'Connor D.,
    5. Jessell T.,
    6. Rubenstein J. L. R.,
    7. Ericson J.
    (1999). The Nkx2.2 homeobox gene mediates graded Sonic Hedgehog signaling and controls ventral neuronal subtype identity. Nature 398, 622–627
    OpenUrlCrossRefPubMed
    1. Bulfone A.,
    2. Puelles L.,
    3. Porteus M. H.,
    4. Frohman M. A.,
    5. Martin G. R.,
    6. Rubenstein J. L. R.
    (1993). Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci 13, 3155–3172
    OpenUrlAbstract
    1. Bulfone A.,
    2. Wang F.,
    3. Hevner R.,
    4. Anderson S. A.,
    5. Cutforth T.,
    6. Chen S.,
    7. Meneses J.,
    8. Pedersen R.,
    9. Axel R.,
    10. Rubenstein J. L. R.
    (1998) An olfactory sensory map develops in the absence of normal projection neurons or Gabaergic interneurons. Neuron 21, 1273–1282
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMed
    1. Chu H.,
    2. Parras C.,
    3. White K.,
    4. Jimenez F.
    (1998) Formation and specification of ventral neuroblasts is controlled by vnd in drosophila neurogenesis. Genes Dev 12, 3613–3624
    OpenUrlAbstract/FREE Full Text
    1. Dale J. K.,
    2. Vesque C.,
    3. Lints T. J.,
    4. Sampath T. K.,
    5. Furley A.,
    6. Dodd J.,
    7. Placzek M.
    (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269
    OpenUrlCrossRefPubMedWeb of Science
    1. de Carlos J. A.,
    2. Lopez-Mascaraque L.,
    3. Valverde F.
    (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci 16, 6146–6156
    OpenUrlAbstract/FREE Full Text
    1. Ericson J.,
    2. Muhr J.,
    3. Placzek M.,
    4. Lints T.,
    5. Jessell T. M.,
    6. Edlund T.
    (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of Sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Rashbass P.,
    3. Schedl A.,
    4. Brenner-Morton S.,
    5. Kawakami A.,
    6. van Heyningen V.,
    7. Jessell T. M.,
    8. Briscoe J.
    (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Gerfen C. R.
    (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15, 133–139
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldman S. A.,
    2. Luskin M. B.
    (1998) Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci 21, 107–114
    OpenUrlCrossRefPubMedWeb of Science
    1. Grigoriou M.,
    2. Tucker A. S.,
    3. Sharpe P. T.,
    4. Pachnis V.
    (1998) Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125, 2063–2074
    OpenUrlAbstract
    1. Guazzi S.,
    2. Price M.,
    3. De Felice M.,
    4. Damante G.,
    5. Mattei M.-G.,
    6. Di Lauro R.
    (1990) Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBOJ 9, 3631–3639
    OpenUrlPubMedWeb of Science
    1. Hynes M.,
    2. Poulsen K.,
    3. Tessier-Lavigne M.,
    4. Rosenthal A.
    (1995) Control of neuronal diversity by the floor plate: Contact-mediated induction of midbrain dopaminergic neurons. Cell 80, 95–101
    OpenUrlCrossRefPubMedWeb of Science
    1. Jimenez F.,
    2. Martin-Morris L. E.,
    3. Velasco L.,
    4. Chu H.,
    5. Sierra J.,
    6. Rosen D. R.,
    7. White K.
    (1995) vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J 14, 3487–3495
    OpenUrlPubMedWeb of Science
    1. Kim Y.,
    2. Nirenberg M.
    (1989) Drosophila NK-homeobox genes. Proc. Natl. Acad. Sci. USA 86, 716–7720
    OpenUrlAbstract/FREE Full Text
    1. Kimura S.,
    2. Hara Y.,
    3. Pineau T.,
    4. Fernandez-Salguero P.,
    5. Fox C. H.,
    6. Ward J. M.,
    7. Gonzalez F. J.
    (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10, 60–69
    OpenUrlAbstract/FREE Full Text
    1. Kohtz J. D.,
    2. Baker D. P.,
    3. Corte G.,
    4. Fishell G.
    (1998) Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125, 5079–5089
    OpenUrlAbstract
    1. Liu J. K.,
    2. Ghattas I.,
    3. Liu S.,
    4. Chen S.,
    5. Rubenstein J.L.R.
    (1997) The Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev. Dynam 210, 498–512
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Graham A.
    (1995) Neural patterning: A forward role for hedgehog. Curr Biol 5, 1347–1350
    OpenUrlCrossRefPubMedWeb of Science
    1. Matise M. P.,
    2. Epstein D. J.,
    3. Park H. L.,
    4. Platt K. A.,
    5. Joyner A. L.
    (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–70
    OpenUrlAbstract
    1. Mizuno K.,
    2. Gonzalez F. J.,
    3. Kimura S.
    (1991) Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1. Mol Cell Biol 10, 4927–4933
    OpenUrl
    1. Pabst O.,
    2. Herbrand H.,
    3. Arnold H. H.
    (1998) Nkx2-9 is a novel homeobox transcription factor which demarcates ventral domains in the developing mouse CNS. Mech Dev 73, 85–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Porteus M. H.,
    2. Bulfone A.,
    3. Liu J. K.,
    4. Puelles L.,
    5. Lo L. C.,
    6. Rubenstein J. L. R.
    (1994) Dlx-2, Mash-1, and MAP-2 expression andbromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. Neurosci 14, 6370–6383
    OpenUrlAbstract
    1. Price M.,
    2. Lazzaro D.,
    3. Pohl T.,
    4. Mattei M.-G.,
    5. Ruther U.,
    6. Olivo J.-C.,
    7. Duboule D.,
    8. Di Lauro R.
    (1992). Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 8, 241–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Puelles L.,
    2. Rubenstein J. L. R.
    (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16, 472–479
    OpenUrlCrossRefPubMedWeb of Science
    1. Rubenstein J. L. R.,
    2. Martinez S.,
    3. Shimamura K.,
    4. Puelles L.
    (1994) The prosomereic model: a proposal for the organization of the embryonic forebrain. Science 266, 578–560
    OpenUrlFREE Full Text
    1. Rubenstein J. L. R.,
    2. Shimamura K.,
    3. Martinez S.,
    4. Puelles L.
    (1998) Regionalization of the prosencephalic neural plate,. Annu. Rev. Neurosci 21, 445–478
    OpenUrlCrossRefPubMedWeb of Science
    1. Rubenstein J. L. R.,
    2. Beachy P. A.
    (1998) Patterning of the embryonic forebrain. Curr. Opin. Neurobiol 8, 18–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Shimamura K.,
    2. Rubenstein J. L. R.
    (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718
    OpenUrlAbstract
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J. L. R.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Shimamura K.,
    2. Martinez S.,
    3. Puelles L.,
    4. Rubenstein J. L. R.
    (1997) Patterns of gene expression in the neural plate and neural tube subdivide theembryonic forebrain into transverse and longitudinal domains. Dev. Neurosci 19, 88–96
    OpenUrlPubMedWeb of Science
    1. Sobreviela T.,
    2. Clary D. O.,
    3. Reichardt L. F.,
    4. Brandabur M. M.,
    5. Kordower J. H.,
    6. Mufson E. J.
    (1994) TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J. Comp. Neurol 350, 587–611
    OpenUrlCrossRefPubMedWeb of Science
    1. Takuma N.,
    2. Sheng H. Z.,
    3. Furuta Y.,
    4. Ward J. M.,
    5. Sharma K.,
    6. Hogan B. L. M.,
    7. Pfaff S. L.,
    8. Westphal H.,
    9. Kimura S.,
    10. Mahon K. A.
    (1998) Formation of Rathke's pouch requires dual induction from the diencephalon. Development 125, 4835–4840
    OpenUrlAbstract
    1. Tamamaki N.,
    2. Fujimori K. E.,
    3. Takauji R.
    (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci 17, 8313–8323
    OpenUrlAbstract/FREE Full Text
    1. Wanaka A.,
    2. Matsumoto K.,
    3. Kashihara Y.,
    4. Furuyama T.,
    5. Tanaka T.,
    6. Mori T.,
    7. Tanno Y.,
    8. Yokoya S.,
    9. Kitanaka J.,
    10. Takemura M.,
    11. Tohyama M.
    (1997) LIM-homeodomain gene family in neural development. Dev. Neurosci 19, 97–100
    OpenUrlPubMedWeb of Science
    1. Weiss J. B.,
    2. Von Ohlen T.,
    3. Mellerick D. M.,
    4. Dressler G.,
    5. Doe C. Q.,
    6. Scott M. P.
    (1998) Dorsoventral patterning in the drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev 12, 3591–3602
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum
L. Sussel, O. Marin, S. Kimura, J.L. Rubenstein
Development 1999 126: 3359-3370;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum
L. Sussel, O. Marin, S. Kimura, J.L. Rubenstein
Development 1999 126: 3359-3370;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
  • Drosophila puckered regulates Fos/Jun levels during follicle cell morphogenesis
  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992