Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development
D.M. Parichy, J.F. Rawls, S.J. Pratt, T.T. Whitfield, S.L. Johnson
Development 1999 126: 3425-3436;
D.M. Parichy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.F. Rawls
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.J. Pratt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.T. Whitfield
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.L. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The relative roles of the Kit receptor in promoting the migration and survival of amniote melanocytes are unresolved. We show that, in the zebrafish, Danio rerio, the pigment pattern mutation sparse corresponds to an orthologue of c-kit. This finding allows us to further elucidate morphogenetic roles for this c-kit-related gene in melanocyte morphogenesis. Our analyses of zebrafish melanocyte development demonstrate that the c-kit orthologue identified in this study is required both for normal migration and for survival of embryonic melanocytes. We also find that, in contrast to mouse, the zebrafish c-kit gene that we have identified is not essential for hematopoiesis or primordial germ cell development. These unexpected differences may reflect evolutionary divergence in c-kit functions following gene duplication events in teleosts.

Reference

    1. Adachi S.,
    2. Ebi Y.,
    3. Nishikawa S.-I.,
    4. Hayashi S.-I.,
    5. Yamazaki M.,
    6. Kasugai T.,
    7. Yamamura T.,
    8. Nomura S.,
    9. Kitamura Y.
    (1992) Necessity of extracellular domain of W (c- kit) receptors for attachment of murine cultured mast cells to fibroblasts. Blood 79, 650–656
    OpenUrlAbstract/FREE Full Text
    1. Amores A.,
    2. Force A.,
    3. Yan Y.-L.,
    4. Joly L.,
    5. Amemiya C.,
    6. Fritz A.,
    7. Ho R. K.,
    8. Langeland J.,
    9. Prince V.,
    10. Wang Y.-L.,
    11. Westefield M.,
    12. Ekker M.,
    13. Posthelthwait J. H.
    (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714
    OpenUrlAbstract/FREE Full Text
    1. Anderson D. M.,
    2. Lyman S. D.,
    3. Baird A.,
    4. Wignall J. M.,
    5. Eisenman J.,
    6. Rauck C.,
    7. March C. J.,
    8. Boswell H. S.,
    9. Gimpel S. D.,
    10. Cosman D.,
    11. Williams D. E.
    (1990) Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 63, 235–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Baker C. V. H.,
    2. Sharpe C. R.,
    3. Torpey N. P.,
    4. Heasman J.,
    5. Wylie C. C.
    (1995) A Xenopus c- kit -related receptor tyosine kinase expressed in migrating stem cells of the lateral line system. Mech. Dev 50, 217–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Barsh G. S.
    (1996) The genetics of pigmentation: from fancy genes to complex traits. Trends Genet 12, 299–305
    OpenUrlCrossRefPubMedWeb of Science
    1. Bernex F.,
    2. De Sepulveda P.,
    3. Kress C.,
    4. Elbaz C.,
    5. Delouis C.,
    6. Panthier J.-J.
    (1996) Spatial and temporal patterns of c- kit -expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos. Development 122, 3023–3033
    OpenUrlAbstract
    1. Besmer P.,
    2. Manova K.,
    3. Duttlinger R.,
    4. Huang E. J.,
    5. Packer A.,
    6. Gyssler C.,
    7. Bachvarova R. F.
    (1993) The kit -ligand (steel factor) and its receptor c- kit / W: pleiotropic roles in gametogenesis and melanogenesis. Development 1993, 125–137
    1. Broudy V. C.
    (1997) Stem cell factor and hematopoiesis. Blood 90, 1345–1364
    OpenUrlFREE Full Text
    1. Cable J.,
    2. Jackson I. J.,
    3. Steel K. P.
    (1995) Mutations at the W locus affect survival of neural crest-derived melanocytes in the mouse. Mech. Dev 50, 139–150
    OpenUrlCrossRefPubMedWeb of Science
    1. de Aberle
    (1927) A study of the hereditary anaemia of mice. Amer. J. Anat 40, 219–249
    OpenUrlCrossRef
    1. Detrich H. W. I.,
    2. Kieran M. W.,
    3. Chan F. Y.,
    4. Barone L. M.,
    5. Yee K.,
    6. Rundstadler J. A.,
    7. Pratt S.,
    8. Ransom D.,
    9. Zon L. I.
    (1995) Intraembryonic hematopoietic cell migration during vertebrate development. Proc. Natl. Acad. Sci. USA 92, 10713–10717
    OpenUrlAbstract/FREE Full Text
    1. Dickman M. C.,
    2. Schliwa M.,
    3. Barlow G. W.
    (1988) Melanophore deathand disappearance produces color metamorphosis in the polychromatic Midas cichlid (Cichlasoma citrinellum). Cell Tissue Res 253, 9–14
    OpenUrlPubMedWeb of Science
    1. Erickson C. A.
    (1993) From the crest to the periphery: control of pigment cell migration and lineage segregation. Pigment Cell Res 6, 336–347
    OpenUrlCrossRefPubMedWeb of Science
    1. Erickson C. A.,
    2. Perris R.
    (1993) The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest. Dev. Biol 159, 60–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Force A.,
    2. Lynch M.,
    3. Pickett F. B.,
    4. Amores A.,
    5. Yan Y.-L.,
    6. Postelthwait J.
    (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545
    OpenUrlAbstract/FREE Full Text
    1. Geissler E. N.,
    2. McFarland E. C.,
    3. Russell E. S.
    (1981) Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 97, 337–361
    OpenUrlAbstract/FREE Full Text
    1. Giebel L. B.,
    2. Spritz R. A.
    (1991) Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism. Proc. Natl. Acad. Sci. USA 88, 8696–8699
    OpenUrlAbstract/FREE Full Text
    1. Grichnik J. M.,
    2. Ali W. N.,
    3. Burch J. A.,
    4. Byers J. D.,
    5. Garcia C. A.,
    6. Clark R. E.,
    7. Shea C. R.
    (1996) KIT expression reveals a population of precursor melanocytes in human skin. J. Invest. Dermatol 106, 967–971
    OpenUrlCrossRefPubMedWeb of Science
    1. Groves A. K.,
    2. Bronner-Fraser M.
    (1999) Neural crest diversification. Curr. Topics Dev. Biol 43, 221–258
    OpenUrlPubMedWeb of Science
    1. Guo C. S.,
    2. Wehrle-Haller B.,
    3. Rossi J.,
    4. Ciment G.
    (1997) Autocrine regulation of neural crest cell development by Steel factor. Dev. Biol 184, 61–69
    OpenUrlCrossRefPubMedWeb of Science
    1. Hirata T.,
    2. Morii E.,
    3. Morimoto M.,
    4. Kasugai T.,
    5. Tsujimura T.,
    6. Hirota S.,
    7. Kanakura Y.,
    8. Nomura S.,
    9. Kitamura Y.
    (1993) Stem cell factor induces outgrowth of c- kit -positive neurites and supports the survival of c- kit -positive neurons in dorsal root ganglia of mouse embryos. Development 119, 49–56
    OpenUrlAbstract
    1. Ho R. K.,
    2. Kane D. A.
    (1990) Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348, 728–730
    OpenUrlCrossRefPubMed
    1. Huang E.,
    2. Nocka K.,
    3. Beier D. R.,
    4. Chu T.-Y.,
    5. Buck J.,
    6. Lahm H.-W.,
    7. Wellner D.,
    8. Leder P.,
    9. Besmer P.
    (1990) The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c- kit receptor, the gene product of the W locus. Cell 63, 225–233
    OpenUrlCrossRefPubMedWeb of Science
    1. Iuchi I.,
    2. Yamamoto M.
    (1983) Erythropoiesis in the developing rainbow trout, Salmo gairdneri deus: histochemical and immunological detection of erythropoietic organs. J. Exp. Zool 226, 409–417
    OpenUrlCrossRefPubMed
    1. Johnson S. L.,
    2. Africa D.,
    3. Walker C.,
    4. Weston J. A.
    (1995) Genetic control of adult pigment stripe development in zebrafish. Dev. Biol 167, 27–33
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson S. L.,
    2. Gates M. A.,
    3. Johnson M.,
    4. Talbot W. S.,
    5. Horne S.,
    6. Baik K.,
    7. Rude S.,
    8. Wong J. R.,
    9. Postlethwait J. H.
    (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142, 1277–1288
    OpenUrlAbstract/FREE Full Text
    1. Kao K. R.,
    2. Bernstein A.
    (1995) Expression of Xkl-1, a Xenopus gene related to mammalian c-kit, in dorsal embryonic tissue. Mech. Dev 50, 57–69
    OpenUrlCrossRefPubMedWeb of Science
    1. Kelsh R. N.,
    2. Brand M.,
    3. Jiang Y.-J.,
    4. Heisenberg C.-P.,
    5. Lin S.,
    6. Haffter P.,
    7. Odenthal J.,
    8. Mullins M. C.,
    9. van Eeden F. J. M.,
    10. Furutani-Seiki M.,
    11. Granato M.,
    12. Hammerschmidt M.,
    13. Kane D. A.,
    14. Warga R. M.,
    15. Beuchle D.,
    16. Vogelsang L.,
    17. Nusslein-Volhard C.
    (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123, 369–389
    OpenUrlAbstract/FREE Full Text
    1. Kim C. H.,
    2. Broxmeyer H. E.
    (1998) In vitro behavior of hematopoeitic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91, 100–110
    OpenUrlAbstract/FREE Full Text
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullmann B.,
    5. Schilling T. F.
    (1995) Stages of embryonic development of the zebrafish. Dev. Dynamics 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Kinashi T.,
    2. Springer T. A.
    (1994) Steel factor and c- kit regulate cell-matrix adhesion. Blood 83, 1033–1038
    OpenUrlAbstract/FREE Full Text
    1. Kunisada T.,
    2. Yoshida H.,
    3. Yamazaki H.,
    4. Miyamoto A.,
    5. Hemmi H.,
    6. Nishimura E.,
    7. Shultz L. D.,
    8. Nishikawa S.-I.,
    9. Hayashi S.-I.
    (1998) Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125, 2915–2923
    OpenUrlAbstract
    1. Lahav R.,
    2. Lecoin L.,
    3. Ziller C.,
    4. Nataf V.,
    5. Carnahan J. F.,
    6. Martin F. H.,
    7. Le Douarin N. M.
    (1994) Effect of the Steel gene product onmelanogenesis in avian neural crest cell cultures. Differentiation 58, 133–139
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Douarin N. M.,
    2. Dupin E.,
    3. Ziller C.
    (1994) Genetic and epigenetic control in neural crest development. Cur. Opin. Gen. Dev 4, 685–695
    OpenUrlCrossRefPubMed
    1. Lecoin L.,
    2. Lahav R.,
    3. Martin F. H.,
    4. Teillet M.-A.,
    5. Le Douarin N. M.
    (1995) Steel and c-kit in the development of avian melanocytes: a study of normally pigmented birds and of the hyperpigmented mutant silky fowl. Dev. Dyn 203, 106–118
    OpenUrlPubMedWeb of Science
    1. Lin S.,
    2. Long W.,
    3. Chen J.,
    4. Hopkins N.
    (1992) Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc. Natl Acad. Sci. USA 89, 4519–4523
    OpenUrlAbstract/FREE Full Text
    1. Little C. C.,
    2. Cloudman A. M.
    (1937) The occurrence of a dominant spotting mutation in the house mouse. Proc. Natl. Acad. Sci. USA 23, 535–537
    OpenUrlFREE Full Text
    1. Lyman S. D.,
    2. Jacobsen S. E. W.
    (1998) c- kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91, 1101–1134
    OpenUrlFREE Full Text
    1. MacKenzie M. A. F.,
    2. Jordan S. A.,
    3. Budd P. S.,
    4. Jackson I. J.
    (1997) Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev. Biol 192, 99–107
    OpenUrlCrossRefPubMedWeb of Science
    1. Maeda H.,
    2. Yamagata A.,
    3. Nishikawa S.,
    4. Yoshinaga K.,
    5. Kobayashi S.,
    6. Nishi K.,
    7. Nishikawa S.
    (1992) Requirement of c- kit for development of intestinal pacemaker system. Development 116, 369–375
    OpenUrlAbstract/FREE Full Text
    1. Manova K.,
    2. Bachvarova R. F.
    (1991) Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev. Biol 146, 312–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Marklund S.,
    2. Kijas J.,
    3. Rodriguez-Martinez H.,
    4. Ronnstrand L.,
    5. Funa K.,
    6. Moller M.,
    7. Lange D.,
    8. Edfors-Lilja I.,
    9. Andersson L.
    (1998) Molecular basis for the dominant white phenotype in the domestic pig. Genome Res 8, 826–833
    OpenUrlAbstract/FREE Full Text
    1. Mason K. A.,
    2. Parker N. B.,
    3. Parichy D. M.,
    4. Voss S. R.
    (1998) Molecular characterization of c- kit from the Mexican axolotl. Pigment Cell Res 11, 175–.
    OpenUrl
    1. Mayer T. C.,
    2. Green M. C.
    (1968) An experimental analysis of the pigment defect caused by mutations at the W and Sl loci in mice. Dev. Biol 18, 62–75
    OpenUrlCrossRefPubMedWeb of Science
    1. Meininger C. J.,
    2. Yano H.,
    3. Rottapel R.,
    4. Bernstein A.,
    5. Zsebo K. M.,
    6. Zetter B. R.
    (1992) The c- kit receptor ligand functions as a mast cell chemoattractant. Blood 79, 958–963
    OpenUrlAbstract/FREE Full Text
    1. Mintz B.,
    2. Russell E. S.
    (1957) Gene-induced embryological modifications of primordial germ cells in the mouse. J. Exp. Zool 134, 207–237
    OpenUrlCrossRefPubMedWeb of Science
    1. Morrison-Graham K.,
    2. Weston J. A.
    (1993) Transient Steel factor dependence by neural crest-derived melanocyte precursors. Dev. Biol 159, 346–352
    OpenUrlCrossRefPubMedWeb of Science
    1. Motro B.,
    2. van der Kooy D.,
    3. Rossant J.,
    4. Reith A.,
    5. Bernstein A.
    (1991) Contiguous patterns of c- kit and steel expression: analysis of mutations at the W and Sl loci. Development 113, 1207–1221
    OpenUrlAbstract
    1. Murphy M.,
    2. Reid K.,
    3. Williams D. E.,
    4. Lyman S. D.,
    5. Bartlett P. F.
    (1992) Steel factor is required for maintenance, but not differentiation, of melanocyte precursors in the neural crest. Dev. Biol 153, 396–401
    OpenUrlCrossRefPubMed
    1. Nocka K.,
    2. Tan J. C.,
    3. Chiu E.,
    4. Chu T. Y.,
    5. Ray P.,
    6. Traktman P.,
    7. Besmer P.
    (1990) Molecular bases of dominant negative and loss of function mutations at the murine c -kit /white spotting locus: W37, W41 and W. EMBO J 9, 1805–1813
    OpenUrlPubMedWeb of Science
    1. Okura M.,
    2. Maeda H.,
    3. Nishikawa S.,
    4. Mizoguchi M.
    (1995) Effects of monoclonal anti-c-kit antibody (ACK2) on melanocytes in newborn mice. J. Invest. Dermatol 105, 322–328
    OpenUrlCrossRefPubMedWeb of Science
    1. Opdecamp K.,
    2. Nakayama A.,
    3. Nguyen M.-T.,
    4. Hogkinson C. A.,
    5. Pavan W.J.,
    6. Arnheiter H.
    (1997) Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124, 2377–2386
    OpenUrlAbstract
    1. Orr-Urtreger A.,
    2. Avivi A.,
    3. Zimmer Y.,
    4. Givol D.,
    5. Yarden Y.,
    6. Lonai P.
    (1990) Developmental expression of c- kit, a proto-oncogene encoded by the W locus. Development 109, 911–923
    OpenUrlAbstract/FREE Full Text
    1. Parichy D. M.
    (1996) Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms. Dev. Biol 175, 265–282
    OpenUrlCrossRefPubMed
    1. Parichy D. M.
    (1996) Salamander pigment patterns: how can they be used to study developmental mechanisms and their evolutionary transformation?. Int. J. Dev. Biol 40, 871–884
    OpenUrlPubMed
    1. Pesce M.,
    2. Di Carlo A.,
    3. De Felici M.
    (1997) The c- kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mech. Dev 68, 37–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Qiu F.,
    2. Ray P.,
    3. Brown K.,
    4. Barker P. E.,
    5. Jhanwar S.,
    6. Ruddle F. H.,
    7. Besmer P.
    (1988) Primary structure of c- kit: relationship with the CSF-1/PDGF receptor kinase family—oncogenic activation of v- kit involves deletoin of extracellular domain and C terminus. EMBO J 7, 1003–1011
    OpenUrlPubMedWeb of Science
    1. Raible D. W.,
    2. Eisen J. S.
    (1994) Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development 120, 495–503
    OpenUrlAbstract
    1. Ransom D. G.,
    2. Haffter P.,
    3. Odenthal J.,
    4. Brownlie A.,
    5. Vogelsang E.,
    6. Kelsh R. N.,
    7. Brand M.,
    8. van Eeden F. J. M.,
    9. Furutani-Seiki M.,
    10. Granato M.,
    11. Hammerschmidt M.,
    12. Heisenberg C.-P.,
    13. Jiang Y. J.,
    14. Kane D. A.,
    15. Mullins M. C.,
    16. Nusslein-Volhard C.
    (1996) Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319
    OpenUrlAbstract/FREE Full Text
    1. Reid K.,
    2. Nishikawa S. I.,
    3. Bartlett P. F.,
    4. Murphy M.
    (1995) Steel factor directs melanocyte development in vitro through selective regulation of the number of of c-kit+progenitors. Dev. Biol 169, 568–579
    OpenUrlCrossRefPubMedWeb of Science
    1. Rice W. R.
    (1989) Analyzing tables of statistical tests. Evolution 43, 223–225
    OpenUrlCrossRefWeb of Science
    1. Rousset D.,
    2. Agnes F.,
    3. Lachaume P.,
    4. Andre C.,
    5. Galibert F.
    (1995) Molecular evolution of the genes encoding receptor tyrosine kinase with immunoglobulinlike domains. J. Mol. Evol 41, 421–429
    OpenUrlCrossRefPubMedWeb of Science
    1. Russell E. S.
    (1949) Analysis of pleitropism at the W -locus in the mouse: relationship between the effects of W and Wv substitution on hair pigmentation and on erythrocytes. Genetics 34, 708–723
    OpenUrlFREE Full Text
    1. Russell E. S.
    (1979) Hereditary anemias of the mouse: a review for geneticists. Adv. Genet 20, 357–459
    OpenUrlCrossRefPubMed
    1. Russell E. S.,
    2. Fondal E. L.
    (1951) Quantitative analysis of the normal and four alternative degrees of an inherited macrocytic anemia in the house mouse. Blood 6, 892–905
    OpenUrlAbstract/FREE Full Text
    1. Schilling T. F.,
    2. Kimmel C. B.
    (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494
    OpenUrlAbstract
    1. Schutte B. C.,
    2. Ranade K.,
    3. Pruessner J.,
    4. Dracopoli N.
    (1997) Optimized conditions for cloining PCR products into an Xcm I T-vector. BioTechniques 22, 40–44
    OpenUrlPubMedWeb of Science
    1. Scott G.,
    2. Ewing J.,
    3. Ryan D.,
    4. Abboud C.
    (1994) Stem cell factor regulates human melanocyte-matrix interactions. Pigment Cell Res 7, 44–51
    OpenUrlCrossRefPubMedWeb of Science
    1. Serbedzija G. N.,
    2. Fraser S. E.,
    3. Bronner-Fraser M.
    (1990) Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605–612
    OpenUrlAbstract/FREE Full Text
    1. Smith S. M.,
    2. Cartwright M. M.
    (1997) Spatial visualization of apoptosis using a whole-mount in situ DNA end-labeling technique. Biotechniques 22, 832–834
    OpenUrlPubMed
    1. Solnica-Krezel L.,
    2. Schier A. F.,
    3. Driever W.
    (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420
    OpenUrlAbstract/FREE Full Text
    1. Steel K. P.,
    2. Davidson D. R.,
    3. Jackson I. J.
    (1992) TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115, 1111–1119
    OpenUrlAbstract
    1. Streisinger G.,
    2. Singer F.,
    3. Walker C.,
    4. Knauber D.,
    5. Dower N.
    (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112, 311–319
    OpenUrlAbstract/FREE Full Text
    1. Tan J. C.,
    2. Nocka K.,
    3. Ray P.,
    4. Traktman P.,
    5. Besmer P.
    (1990) The dominant W 42 spotting phenotype results from a missense mutation in the c- kit receptor tyrosine kinase. Science 247, 209–212
    OpenUrlAbstract/FREE Full Text
    1. Thomas L. A.,
    2. Yamada K. M.
    (1992) Contact stimulation of cell migration. J. Cell Sci 103, 1211–1214
    OpenUrlAbstract/FREE Full Text
    1. Tsujimura T.,
    2. Hirota S.,
    3. Nomura S.,
    4. Niwa Y.,
    5. Yamazaki M.,
    6. Tono T.,
    7. Morii E.,
    8. Kim H.-M.,
    9. Kondo K.,
    10. Nishimune Y.,
    11. Kitamura Y.
    (1991) Characterization of Ws mutant allele of rats: a 12-base deletion in tyrosine kinase domain of c- kit gene. Blood 78, 1942–1946
    OpenUrlAbstract/FREE Full Text
    1. Tucker R. P.,
    2. Erickson C. A.
    (1986) The control of pigment cell pattern formation in the California newt, Taricha torosa. J. Embryol. Exp. Morph 97, 141–168
    OpenUrlPubMed
    1. van der Geer P.,
    2. Hunter T.,
    3. Lindberg R. A.
    (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Ann. Rev. Cell Biol 10, 251–337
    OpenUrlCrossRefWeb of Science
    1. Vincent W.,
    2. Segretain D.,
    3. Nishikawa S.,
    4. Nishikawa S.-I.,
    5. Sage J.,
    6. Cuzin F.,
    7. Rassoulzadegan M.
    (1998) Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: a Kit-KL interaction critical for meiosis. Development 125, 4585–4593
    OpenUrlAbstract
    1. Wakamatsu Y.,
    2. Mochii M.,
    3. Vogel K. S.,
    4. Weston J. A.
    (1998) Avian neural crest-derived neurogenic precursors undergo apoptosis on the lateral migration pathway. Development 125, 4205–4213
    OpenUrlAbstract
    1. Wehrle-Haller B.,
    2. Weston J. A.
    (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121, 731–742
    OpenUrlAbstract
    1. Wehrle-Haller B.,
    2. Weston J. A.
    (1997) Receptor tyrosine kinase-depednent neural crest migration in response to differentially localized growth factors. BioEssays 19, 337–345
    OpenUrlCrossRefPubMedWeb of Science
    1. Weinstein B. M.,
    2. Schier A. F.,
    3. Abdelilah S.,
    4. Malicki J.,
    5. Solnica-Krezel L.,
    6. Stemple D. L.,
    7. Stanier D. Y. R.,
    8. Zwartkruis F.,
    9. Driever W.,
    10. Fishman M. C.
    (1996) Hematopoietic mutations in the zebrafish. Development 123, 303–309
    OpenUrlAbstract/FREE Full Text
    1. Weston J. A.
    (1991) Sequential segregation and fate of developmentally restricted intermediate cell populations in the neural crest lineage. Curr. Topics Dev. Biol 25, 133–153
    OpenUrlCrossRefPubMedWeb of Science
    1. Yoon C.,
    2. Kawakami K.,
    3. Hopkins N.
    (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2-and 4-cell stage embryos andis expressed in the primordial germ cells. Development 124, 3157–3166
    OpenUrlAbstract
    1. Yoshida H.,
    2. Kunisada T.,
    3. Kusakabe M.,
    4. Nishikawa S.,
    5. Nishikawa S.-I.
    (1996) Distinct stages of melanocyte differentiation revealed by analysis of nonuniform pigmentation patterns. Development 122, 1207–1214
    OpenUrlAbstract
    1. Zhang Z.,
    2. Galileo D. S.
    (1997) Direct in situ end-labeling for detection of apoptotic cells in tissue sections. Biotechniques 22, 834–836
    OpenUrlPubMed
    1. Zsebo K. M.,
    2. Williams D. A.,
    3. Geissler E. N.,
    4. Broudy V. C.,
    5. Martin F. H.,
    6. Atkins H. L.,
    7. Hsu R.-Y.,
    8. Birkett N. C.,
    9. Okino K. H.,
    10. Murdock D. C.,
    11. Jacobsen F. W.,
    12. Langley K. E.,
    13. Smith K. A.,
    14. Takeishi T.,
    15. Cattanach B. M.,
    16. Galli J.,
    17. Suggs S. V.
    (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand of the c- kit tyrosine kinase receptor. Cell 63, 213–224
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development
D.M. Parichy, J.F. Rawls, S.J. Pratt, T.T. Whitfield, S.L. Johnson
Development 1999 126: 3425-3436;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development
D.M. Parichy, J.F. Rawls, S.J. Pratt, T.T. Whitfield, S.L. Johnson
Development 1999 126: 3425-3436;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992