Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate
J.A. Lister, C.P. Robertson, T. Lepage, S.L. Johnson, D.W. Raible
Development 1999 126: 3757-3767;
J.A. Lister
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.P. Robertson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Lepage
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.L. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.W. Raible
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We report the isolation and identification of a new mutation affecting pigment cell fate in the zebrafish neural crest. Homozygous nacre (nac(w2)) mutants lack melanophores throughout development but have increased numbers of iridophores. The non-crest-derived retinal pigment epithelium is normal, suggesting that the mutation does not affect pigment synthesis per se. Expression of early melanoblast markers is absent in nacre mutants and transplant experiments suggested a cell-autonomous function in melanophores. We show that nac(w2) is a mutation in a zebrafish gene encoding a basic helix-loop-helix/leucine zipper transcription factor related to microphthalmia (Mitf), a gene known to be required for development of eye and crest pigment cells in the mouse. Transient expression of the wild-type nacre gene restored melanophore development in nacre(−/−) embryos. Furthermore, misexpression of nacre induced the formation of ectopic melanized cells and caused defects in eye development in wild-type and mutant embryos. These results demonstrate that melanophore development in fish and mammals shares a dependence on the nacre/Mitf transcription factor, but that proper development of the retinal pigment epithelium in the fish is not nacre-dependent, suggesting an evolutionary divergence in the function of this gene.

Reference

    1. Aberdam E.,
    2. Bertolotto C.,
    3. Sviderskaya E. V.,
    4. de Thillot V.,
    5. Hemesath T. J.,
    6. Fisher D. E.,
    7. Bennett D. C.,
    8. Ortonne J.-P.,
    9. Ballotti R.
    (1998) Involvement of microphthalmia in the inhibition of melanocyte lineage differentiation and of melanogenesis by agouti signal protein. J. Biol. Chem 273, 19560–19565
    OpenUrlAbstract/FREE Full Text
    1. Amae S.,
    2. Fuse N.,
    3. Yasumoto K.,
    4. Sato S.,
    5. Yajima I.,
    6. Yamamoto H.,
    7. Udono T.,
    8. Durlu Y. K.,
    9. Tamai M.,
    10. Takahashi K.,
    11. et al.
    (1998) Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem. Biophys. Res. Comm 247, 710–715
    OpenUrlCrossRefPubMedWeb of Science
    1. Amores A.,
    2. Force A.,
    3. Yan Y.-L.,
    4. Joly L.,
    5. Amemiya C.,
    6. Fritz A.,
    7. Ho R. K.,
    8. Langeland J.,
    9. Prince V.,
    10. Wang Y.-L.,
    11. et al.
    (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714
    OpenUrlAbstract/FREE Full Text
    1. Appel B.,
    2. Eisen J. S.
    (1998) Regulation of neuronal specification in the zebrafish spinal cord by Delta function. Development 125, 371–380
    OpenUrlAbstract
    1. Bagnara J. T.,
    2. Matsumoto J.,
    3. Ferris W.,
    4. Frost S. K.,
    5. Turner W. A. Jr.,
    6. Tchen T. T.,
    7. Taylor J. D.
    (1979) Common origin of pigment cells. Science 203, 410–415
    OpenUrlAbstract/FREE Full Text
    1. Baynash A. G.,
    2. Hosoda K.,
    3. Giaid A.,
    4. Richardson J. A.,
    5. Emoto N.,
    6. Hammer R. E.,
    7. Yanagisawa M.
    (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285
    OpenUrlCrossRefPubMedWeb of Science
    1. Chakrabarti S.,
    2. Streisinger G.,
    3. Singer F.,
    4. Walker C.
    (1983) Frequency of-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, brachydanio rerio. Genetics 103, 109–123
    OpenUrlAbstract/FREE Full Text
    1. Dorsky R. I.,
    2. Moon R. T.,
    3. Raible D. W.
    (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370–373
    OpenUrlCrossRefPubMedWeb of Science
    1. Epstein D. J.,
    2. Vekemans M.,
    3. Gros P.
    (1991) splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774
    OpenUrlCrossRefPubMedWeb of Science
    1. Feldman B.,
    2. Gates M. A.,
    3. Egan E. S.,
    4. Dougan S. T.,
    5. Rennebeck G.,
    6. Sirotkin H. I.,
    7. Schier A. F.,
    8. Talbot W. S.
    (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185
    OpenUrlCrossRefPubMedWeb of Science
    1. Fleischman R. A.
    (1993) From white spots to stem cells: the role of the Kit receptor in mammalian development. Trends Genet 9, 285–289
    OpenUrlCrossRefPubMedWeb of Science
    1. Force A.,
    2. Lynch M.,
    3. Pickett F. B.,
    4. Amores A.,
    5. Yan Y.-l.,
    6. Postlethwait J.
    (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545
    OpenUrlAbstract/FREE Full Text
    1. Furutani-Seiki M.,
    2. Jiang Y. J.,
    3. Brand M.,
    4. Heisenberg C. P.,
    5. Houart C.,
    6. Beuchle D.,
    7. van Eeden F. J.,
    8. Granato M.,
    9. Haffter P.,
    10. Hammerschmidt M.,
    11. et al.
    (1996) Neural degeneration mutants in the zebrafish, Danio rerio. Development 123, 229–239
    OpenUrlAbstract/FREE Full Text
    1. Hemesath T. J.,
    2. Price E. R.,
    3. Takemoto C.,
    4. Badalian T.,
    5. Fisher D. E.
    (1998) MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298–301
    OpenUrlCrossRefPubMed
    1. Hemesath T. J.,
    2. Steingrimsson E.,
    3. McGill G.,
    4. Hansen M. J.,
    5. Vaught J.,
    6. Hodgkinson C. A.,
    7. Arnheiter H.,
    8. Copeland N. G.,
    9. Jenkins N. A.,
    10. Fisher D. E.
    (1994) microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 8, 2770–2780
    OpenUrlAbstract/FREE Full Text
    1. Henion P. D.,
    2. Weston J. A.
    (1997) Timing and pattern of cell fate restrictions in the neural crest lineage. Development 124, 4351–4359
    OpenUrlAbstract
    1. Ho R. K.,
    2. Kane D. A.
    (1990) Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348, 728–730
    OpenUrlCrossRefPubMed
    1. Hodgkinson C. A.,
    2. Moore K. J.,
    3. Nakayama A.,
    4. Steingrimsson E.,
    5. Copeland N. G.,
    6. Jenkins N. A.,
    7. Arnheiter H.
    (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395–404
    OpenUrlCrossRefPubMedWeb of Science
    1. Hodgkinson C. A.,
    2. Nakayama A.,
    3. Li H.,
    4. Swenson L.-B.,
    5. Opdecamp K.,
    6. Asher J. H. Jr.,
    7. Arnheiter H.,
    8. Glaser T.
    (1998) Mutation at the anophthalmic white locus in Syrian hamsters: haploinsufficiency in the Mitf gene mimics human Waardenburg syndrome type 2. Hum. Mol. Genet 7, 703–708
    OpenUrlAbstract/FREE Full Text
    1. Hosoda K.,
    2. Hammer R. E.,
    3. Richardson J. A.,
    4. Baynash A. G.,
    5. Cheung J. C.,
    6. Giaid A.,
    7. Yanagisawa M.
    (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276
    OpenUrlCrossRefPubMedWeb of Science
    1. Ide H.
    (1978) Transformation of amphibian xanthophores into melanophores in clonal culture. J. Exp. Zool 203, 287–294
    OpenUrlCrossRef
    1. Ide H.,
    2. Hama T.
    (1976) Transformation of amphibian iridophores into melanophores in clonal culture. Dev. Biol 53, 297–302
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson S. L.,
    2. Africa D.,
    3. Horne S.,
    4. Postlethwait J. H.
    (1995) Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of Linkage Group I. Genetics 139, 1727–1735
    OpenUrlAbstract/FREE Full Text
    1. Johnson S. L.,
    2. Africa D.,
    3. Walker C.,
    4. Weston J. A.
    (1995) Genetic control of adult pigment stripe development in zebrafish. Dev. Biol 167, 27–33
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson S. L.,
    2. Gates M. A.,
    3. Johnson M.,
    4. Talbot W. S.,
    5. Horne S.,
    6. Baik K.,
    7. Rude S.,
    8. Wong J. R.,
    9. Postlethwait J. H.
    (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142, 1277–1288
    OpenUrlAbstract/FREE Full Text
    1. Kelsh R. N.,
    2. Brand M.,
    3. Jiang Y. J.,
    4. Heisenberg C. P.,
    5. Lin S.,
    6. Haffter P.,
    7. Odenthal J.,
    8. Mullins M. C.,
    9. van Eeden F. J.,
    10. Furutani-Seiki M.,
    11. et al.
    (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123, 369–389
    OpenUrlAbstract/FREE Full Text
    1. Kimmel C. B.,
    2. Ballard W. W.,
    3. Kimmel S. R.,
    4. Ullman B.,
    5. Schilling T. F.
    (1995) Stages of embryonic development of the zebrafish. Dev. Dyn 203, 253–310
    OpenUrlCrossRefPubMedWeb of Science
    1. Kreitner P. C.
    (1957) Linkage studies in a new black-eyed white mutation in the house mouse (not W). J. Hered 48, 300–304
    OpenUrlFREE Full Text
    1. Kunkel T. A.,
    2. Bebenek K.,
    3. McClary J.
    (1991) Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol 204, 125–139
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Douarin N. M.,
    2. Dupin E.,
    3. Ziller C.
    (1994) Genetic and epigenetic control in neural crest development. Curr. Opin. Genet. Dev 4, 685–695
    OpenUrlCrossRefPubMed
    1. Lee J. E.,
    2. Hollenberg S. M.,
    3. Snider L.,
    4. Turner D. L.,
    5. Lipnick N.,
    6. Weintraub H.
    (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844
    OpenUrlAbstract/FREE Full Text
    1. Malicki J.,
    2. Neuhauss S. C. F.,
    3. Schier A. F.,
    4. Solnica-Krezel L.,
    5. Stemple D. L.,
    6. Stainier D. Y. R.,
    7. Abdelilah S.,
    8. Zwartkruis F.,
    9. Rangini Z.,
    10. Driever W.
    (1996) Mutations affecting development of the zebrafish retina. Development 123, 263–273
    OpenUrlAbstract/FREE Full Text
    1. Matsumoto J.,
    2. Wada K.,
    3. Akiyama T.
    (1989) Neural crest cell differentiation and carcinogenesis: capability of goldfish erythrophoroma cells for multiple differentiation and clonal polymorphism in their melanogenic variants. J. Invest. Dermatol 92, 255–.
    OpenUrlCrossRef
    1. Mochii M.,
    2. Mazaki Y.,
    3. Mizuno N.,
    4. Hayashi H.,
    5. Eguchi G.
    (1998) Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev. Biol 193, 47–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Mochii M.,
    2. Ono T.,
    3. Matsubara Y.,
    4. Eguchi G.
    (1998) Spontaneous differentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Dev. Biol 196, 145–159
    OpenUrlCrossRefPubMedWeb of Science
    1. Moore K. J.
    (1995) Insight into the microphthalmia gene. Trends Genet 11, 442–448
    OpenUrlCrossRefPubMedWeb of Science
    1. Nornes S.,
    2. Clarkson M.,
    3. Mikkola I.,
    4. Pedersen M.,
    5. Bardsley A.,
    6. Martinez J. P.,
    7. Krauss S.,
    8. Johansen T.
    (1998) Zebrafish contain two pax6 genes involved in eye development. Mech. Dev 77, 185–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Opdecamp K.,
    2. Nakayama A.,
    3. Nguyen M.-T. T.,
    4. Hodgkinson C. A.,
    5. Pavan W. J.,
    6. Arnheiter H.
    (1997) Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124, 2377–2386
    OpenUrlAbstract
    1. Opdecamp K.,
    2. Vanvooren P.,
    3. Riviere M.,
    4. Arnheiter H.,
    5. Motta R.,
    6. Szpirer J.,
    7. Szpirer C.
    (1998) The rat microphthalmia-associated transcription factor gene (Mitf) maps at 4q34-q31 and is mutated in the mib rats. Mamm. Genome 9, 617–621
    OpenUrlCrossRefPubMedWeb of Science
    1. Parichy D. M.,
    2. Rawls J.F.,
    3. Pratt S. J.,
    4. Whitfield T. T.,
    5. Johnson S. L.
    (1999) Zebrafish sparse corresponds to an orthologue of c- kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126, 3425–3436
    OpenUrlAbstract
    1. Price E. R.,
    2. Ding H.-F.,
    3. Badalian T.,
    4. Bhattacharya S.,
    5. Takemoto C.,
    6. Yao T.-P.,
    7. Hemesath T. J.,
    8. Fisher D. E.
    (1998) Lineage-specific signaling in melanocytes. J. Biol. Chem 273, 17983–17986
    OpenUrlAbstract/FREE Full Text
    1. Raible D. W.,
    2. Eisen J. S.
    (1994) Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development 120, 495–503
    OpenUrlAbstract
    1. Raible D. W.,
    2. Wood A.,
    3. Hodsdon W.,
    4. Henion P. D.,
    5. Weston J. A.,
    6. Eisen J. S.
    (1992) Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Dev. Dyn 195, 29–42
    OpenUrlPubMedWeb of Science
    1. Sato S.,
    2. Roberts K.,
    3. Gambino G.,
    4. Cook A.,
    5. Kouzarides T.,
    6. Goding C. R.
    (1997) CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083–3092
    OpenUrlCrossRefPubMedWeb of Science
    1. Schilling T. F.,
    2. Kimmel C. B.
    (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494
    OpenUrlAbstract
    1. Shoji W.,
    2. Yee C. S.,
    3. Kuwada J. Y.
    (1998) Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo. Development 125, 1275–1283
    OpenUrlAbstract
    1. Solnica-Krezel L.,
    2. Schier A. F.,
    3. Driever W.
    (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420
    OpenUrlAbstract/FREE Full Text
    1. Southard-Smith E. M.,
    2. Kos L.,
    3. Pavan W. J.
    (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet 18, 60–64
    OpenUrlCrossRefPubMedWeb of Science
    1. Steingrimsson E.,
    2. Favor J.,
    3. Ferre-D'Amare A. F.,
    4. Copeland N. G.,
    5. Jenkins N. A.
    (1998) Mitfmi-enu122 is a missense mutation in the HLH dimerization domain. Mamm. Genome 9, 250–252
    OpenUrlCrossRefPubMedWeb of Science
    1. Streisinger G.,
    2. Singer F.,
    3. Walker C.,
    4. Knauber D.,
    5. Dower N.
    (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112, 311–319
    OpenUrlAbstract/FREE Full Text
    1. Streisinger G.,
    2. Walker C.,
    3. Dower N.,
    4. Knauber D.,
    5. Singer F.
    (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296
    OpenUrlCrossRefPubMedWeb of Science
    1. Tachibana M.,
    2. Perez-Jurado L. A.,
    3. Nakayama A.,
    4. Hodgkinson C. A.,
    5. Li X.,
    6. Schneider M.,
    7. Miki T.,
    8. Fex J.,
    9. Francke U.,
    10. Arnheiter H.
    (1994). Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum. Mol. Genet 3, 553–557
    OpenUrlAbstract/FREE Full Text
    1. Tachibana M.,
    2. Takeda K.,
    3. Nobukuni Y.,
    4. Urabe K.,
    5. Long J. E.,
    6. Meyers K. A.,
    7. Aaronson S. A.,
    8. Miki T.
    (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat. Genet 14, 50–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Tassabehji M.,
    2. Newton V. E.,
    3. Read A. P.
    (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat. Genet 8, 251–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Thisse C.,
    2. Thisse B.,
    3. Schilling T. F.,
    4. Postlethwait J. H.
    (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215
    OpenUrlAbstract
    1. Tsujimura T.,
    2. Morii E.,
    3. Nozaki M.,
    4. Hashimoto K.,
    5. Moriyama Y.,
    6. Takebayashi K.,
    7. Kondo T.,
    8. Kanakura Y.,
    9. Kitamura Y.
    (1996) Involvement of transcription factor encoded by the mi locus in the expression of c- kit receptor tyrosine kinase in cultured mast cells of mice. Blood 88, 1225–1233
    OpenUrlAbstract/FREE Full Text
    1. Watanabe A.,
    2. Takeda K.,
    3. Ploplis B.,
    4. Tachibana M.
    (1998) Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat. Genet 18, 283–286
    OpenUrlCrossRefPubMedWeb of Science
    1. Weintraub H.,
    2. Davis R.,
    3. Tapscott S.,
    4. Thayer M.,
    5. Krause M.,
    6. Benezra R.,
    7. Blackwell T. K.,
    8. Turner D.,
    9. Rupp R.,
    10. Hollenberg S.,
    11. et al.
    (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766
    OpenUrlAbstract/FREE Full Text
    1. Wittbrodt J.,
    2. Meyer A.,
    3. Schartl M.
    (1998) More genes in fish?. BioEssays 20, 511–515
    OpenUrlCrossRefWeb of Science
    1. Yasumoto K.,
    2. Yokoyama K.,
    3. Takahashi K.,
    4. Tomita Y.,
    5. Shibahara S.
    (1997) Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem 272, 503–509
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate
J.A. Lister, C.P. Robertson, T. Lepage, S.L. Johnson, D.W. Raible
Development 1999 126: 3757-3767;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate
J.A. Lister, C.P. Robertson, T. Lepage, S.L. Johnson, D.W. Raible
Development 1999 126: 3757-3767;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992