Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and -independent mechanisms
D.J. Epstein, A.P. McMahon, A.L. Joyner
Development 1999 126: 281-292;
D.J. Epstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.P. McMahon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.L. Joyner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The axial midline mesoderm and the ventral midline of the neural tube, the floor plate, share the property of being a source of the secreted protein, Sonic hedgehog (Shh), which has the capacity to induce a variety of ventral cell types along the length of the mouse CNS. To gain insight into the mechanisms by which Shh transcription is initiated in these tissues, we set out to identify the cis-acting sequences regulating Shh gene expression. As an approach, we have tested genomic clones encompassing 35 kb of the Shh locus for their ability to direct a lacZ reporter gene to the temporally and spatially restricted confines of the Shh expression domains in transgenic mice. Three enhancers were identified that directed lacZ expression to distinct regions along the anteroposterior axis including the ventral midline of the spinal cord, hindbrain, rostral midbrain and caudal diencephalon, suggesting that multiple transcriptional regulators are required to initiate Shh gene expression within the CNS. In addition, regulatory sequences were also identified that directed reporter expression to the notochord, albeit, under limited circumstances. Sequence analysis of the genomic clones responsible for enhancer activity from a variety of organisms, including mouse, chicken and human, have identified highly conserved binding sites for the hepatocyte nuclear factor 3 (Hnf3) family of transcriptional regulators in some, but not all, of the enhancers. Moreover, the generation of mutations in the Hnf3-binding sites showed their requirement in certain, but not all, aspects of Shh reporter expression. Taken together, our results support the existence of Hnf3-dependent and -independent mechanisms in the direct activation of Shh transcription within the CNS and axial mesoderm.

Reference

    1. Ang S.-L.,
    2. Rossant J.
    (1994) HNF-3is essential for node and notochord formation in mouse development. Cell 78, 561–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S.-L.,
    2. Wiereda A.,
    3. Wong D.,
    4. Stevens K. A.,
    5. Cascio S.,
    6. Rossant J.,
    7. Zaret K. S.
    (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/ forkhead proteins. Development 119, 1301–1315
    OpenUrlAbstract
    1. Arkell R.,
    2. Beddington R. S. P.
    (1997) BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1–12
    OpenUrlAbstract
    1. Belloni E.,
    2. Muenke M.,
    3. Roessler E.,
    4. Traverso G.,
    5. Siegel-Bartelt J.,
    6. Frumkin A.,
    7. Mitchell H. F.,
    8. Donis-Keller H.,
    9. Helms C.,
    10. Hing A. V.,
    11. Heng H. H. Q.,
    12. Koop B.,
    13. Martindale D.,
    14. Rommens J. M.,
    15. Tsui L.-C.,
    16. Scherer S. W.
    (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genetics 14, 353–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Buscher D.,
    2. Bosse B.,
    3. Heymer J.,
    4. Ruther U.
    (1997) Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development. Mechanisms of Development 62, 175–182
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang B.-E.,
    2. Blader P.,
    3. Fischer N.,
    4. Ingham P. W.,
    5. Strahle U.
    (1997) Axial (HNF3) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. EMBO J 16, 3955–3964
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang D. T.,
    2. Lopez A.,
    3. von Kessler D. P.,
    4. Chiang C.,
    5. Simandl B. K.,
    6. Zhao R.,
    7. Seldin M. F.,
    8. Fallon J. F.,
    9. Beach P. A.
    (1994) Products, genetic linkage, and limb patterning activity of a mouse hedgehog gene. Development 120, 3339–3353
    OpenUrlAbstract
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Clark K. L.,
    2. Halay E. D.,
    3. Lai E.,
    4. Burley S. K.
    (1993) Co-crystal structure of the HNF-3/fork head DNA recognition motif resembles histone H5. Nature 364, 412–420
    OpenUrlCrossRefPubMed
    1. Dahmane N.,
    2. Lee J.,
    3. Robins P.,
    4. Heller P.,
    5. Ruiz i Altaba A.
    (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–881
    OpenUrlCrossRefPubMed
    1. Dale J. K.,
    2. Vesque C.,
    3. Lints T. J.,
    4. Sampath T. K.,
    5. Furley A.,
    6. Dodd J.,
    7. Placzek M.
    (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal plate. Cell 90, 257–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Ding Q.,
    2. Motoyama J.,
    3. Gasca S.,
    4. Mo R.,
    5. Sasaki H.,
    6. Rossant J.,
    7. Hui C.-c.
    (1998) Diminished Sonic Hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125, 2533–2543
    OpenUrlAbstract
    1. Duncan S. A.,
    2. Angeles Navas M.,
    3. Dufort D.,
    4. Rossant J.,
    5. Stoffel M.
    (1998) Regulation of a Transcription Factor Network Required for Differentiation and Metabolism. Science 281, 692–695
    OpenUrlAbstract/FREE Full Text
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules is implicated in the regulation of CNS and limb polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Echelard Y.,
    2. Vassileva G.,
    3. McMahon A. P.
    (1994) Cis -acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120, 2213–2224
    OpenUrlAbstract
    1. Epstein D. J.,
    2. Marti E.,
    3. Scott M. P.,
    4. McMahon A. P.
    (1996) Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122, 2885–2894
    OpenUrlAbstract
    1. Ericson J.,
    2. Muhr J.,
    3. Placzek M.,
    4. Lints T.,
    5. Jessell T. M.,
    6. Edlund T.
    (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Morton S.,
    3. Kawakami A.,
    4. Roelink H.,
    5. Jessell T. M.
    (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Rashbass P.,
    3. Schedl A.,
    4. Brenner-Morton S.,
    5. Kawakami A.,
    6. van Heynigen V.,
    7. Jessell T. M.,
    8. Briscoe J.
    (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Fan C.-M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Beachy P. A.,
    5. Tessier-Lavigne M.
    (1995) Long range sclerotome induction by Sonic hedgehog: direct role of the amino terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81, 457–465
    OpenUrlCrossRefPubMedWeb of Science
    1. Filosa S.,
    2. Rivera-Perez J. A.,
    3. Gomez A. P.,
    4. Gansmuller A.,
    5. Sasaki H.,
    6. Behringer R. R.,
    7. Ang S.-L.
    (1997) goosecoid and HNF-3 genetically interact to regulate neural tube patterning during mouse embryogenesis. Development 124, 2843–2854
    OpenUrlAbstract
    1. Gualdi R.,
    2. Bossard P.,
    3. Zheng M.,
    4. Hamada Y.,
    5. Coleman J. R.,
    6. Zaret K. S.
    (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10, 1670–1682
    OpenUrlAbstract/FREE Full Text
    1. Hammerschmidt M.,
    2. Brook A.,
    3. McMahon A. P.
    (1997) The world according to hedgehog. Trends in Genetics 13, 14–21
    OpenUrlCrossRefPubMedWeb of Science
    1. Hansen S. K.,
    2. Tjian R.
    (1995) TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82, 565–575
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C.-c.,
    2. Joyner A. L.
    (1993) A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics 3, 241–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Hui C.-C.,
    2. Slusarski D.,
    3. Platt K. A.,
    4. Holmgren R.,
    5. Joyner A. L.
    (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm and mesoderm-derived tissues suggests multiple roles during postimplantation development. Developmental Biology 162, 402–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Poulsen K.,
    3. Tessier-Lavigne M.,
    4. Rosenthal A.
    (1995) Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 80, 95–101
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Chang D.,
    5. Tessier-Lavigne M.,
    6. Beachy P. A.,
    7. Rosenthal A.
    (1995) Induction of midbrain dopaminergic neurons by Sonic Hedgehog. Neuron 15, 35–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes M.,
    2. Stone D. M.,
    3. Dowd M.,
    4. Pitts-Meek S.,
    5. Goddard A.,
    6. Gurney A.,
    7. Rosenthal A.
    (1997) Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli1. Neuron 19, 15–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson R. L.
    (1996) Human homologue of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671
    OpenUrlAbstract
    1. Kalderon D.
    (1997) Hedgehog signalling: Ci complex cuts and clasps. Current Biology 7, 759–.
    1. Kaufmann E.,
    2. Knochel W.
    (1996) Five years on the wings of fork head. Mech. Dev 57, 3–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Knezevic V.,
    2. De Santo R.,
    3. Schughart K.,
    4. Huffstadt U.,
    5. Chiang C.,
    6. Mahon K. A.,
    7. Mackem S.
    (1997) Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic Hedgehog in a positive feedback loop. Development 124, 4523–4536
    OpenUrlAbstract
    1. Kothary R.,
    2. Clapoff S.,
    3. Darling S.,
    4. Perry M. D.,
    5. Moran L. A.,
    6. Rossant J.
    (1989) Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105, 707–714
    OpenUrlAbstract/FREE Full Text
    1. Krauss S.,
    2. Concordet J.-P.,
    3. Ingham P. W.
    (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J.,
    2. Platt K. A.,
    3. Censullo P.,
    4. Ruiz i Altaba A.
    (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552
    OpenUrlAbstract
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1114
    OpenUrlAbstract/FREE Full Text
    1. Manzanares M.,
    2. Cordes S.,
    3. Kwan C. T.,
    4. Sham M. H.,
    5. Barsh G. S.,
    6. Krumlauf R.
    (1997) Segmental regulation of Hoxb-3 by kreisler. Nature 387, 191–195
    OpenUrlCrossRefPubMed
    1. Marigo V.,
    2. Davey R. A.,
    3. Zuo Y.,
    4. Cunningham J. M.,
    5. Tabin C. J.
    (1996) Biochemical evidence that Patched is the Hedgehog receptor. Nature 384, 176–179
    OpenUrlCrossRefPubMed
    1. Marigo V.,
    2. Johnson R. L.,
    3. Vortkamp A.,
    4. Tabin C. J.
    (1996) Sonic hedgehog differentially regulates the expression of Gli and Gli3 during limb development. Dev. Biol 180, 272–283
    OpenUrl
    1. Marti E.,
    2. Bumcrot D. A.,
    3. Takada R.,
    4. McMahon A. P.
    (1995) Requirement of 19K forms of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325
    OpenUrlCrossRefPubMed
    1. Marti E.,
    2. Takada R.,
    3. Bumcroft D. A.,
    4. Sasaki H.,
    5. McMahon A. P.
    (1995) Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547
    OpenUrlAbstract
    1. Masuya H.,
    2. Sagai T.,
    3. Wakana S.,
    4. Moriwaki K.,
    5. Shiroishi T.
    (1995) A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 9, 1645–1653
    OpenUrlAbstract/FREE Full Text
    1. Matise M. P.,
    2. Epstein D. J.,
    3. Park H. L.,
    4. Platt K. P.,
    5. Joyner A. L.
    (1998) Gli2 is required for induction of floor plate but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770
    OpenUrlAbstract
    1. McMahon J. A.,
    2. Takada S.,
    3. Zimmerman L. B.,
    4. Fan C.-M.,
    5. Harland R. M.,
    6. McMahon A. P.
    (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12, 1438–1452
    OpenUrlAbstract/FREE Full Text
    1. Merli C.,
    2. Bergstrom D. E.,
    3. Cygan J. A.,
    4. Blackman R. K.
    (1996) Promoter specificity mediates the independent regulation of neighboring genes. Genes Dev 10, 1260–1270
    OpenUrlAbstract/FREE Full Text
    1. Monaghan A. P.,
    2. Kaestner K. H.,
    3. Grau E.,
    4. Schutz G.
    (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3and genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567–578
    OpenUrlAbstract/FREE Full Text
    1. Oro A. E.,
    2. Higgins K. M.,
    3. Hu Z.,
    4. Bonifas J. M.,
    5. Epstein E. H. J.,
    6. Scott M. P.
    (1997) Basal Cell Carcinomas in Mice Over expressing Sonic Hedgehog. Nature 276, 817–821
    OpenUrlCrossRef
    1. Overdier D. G.,
    2. Porcella A.,
    3. Costa R.
    (1994) The DNA-binding specificity of the Hepatocyte Nuclear Factor 3/forkhead domain is influenced by amino acid residues adjacent to the recognition helix. Molec. Cell. Biol 14, 2755–2766
    OpenUrlAbstract/FREE Full Text
    1. Platt K. A.,
    2. Michaud J.,
    3. Joyner A. L.
    (1997) Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mech. Dev 62, 121–135
    OpenUrlCrossRefPubMedWeb of Science
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T. M.,
    11. Dodd J.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Roessler E.,
    2. Belloni E.,
    3. Gaudenz K.,
    4. Jay P.,
    5. Berta P.,
    6. Scherer S. W.,
    7. Tsui L.-C.,
    8. Muenke M.
    (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genetics 14, 357–360
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Jessell T. M.,
    3. Roelink H.
    (1995) Restrictions to floor plate induction by hedgehog and winged helix genes in the neural tube of frog embryos. Mol. Cell. Neurosci 6, 106–121
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1997) Catching a Gli-mpse of Hedgehog. Cell 90, 193–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1998) Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125, 2203–2212
    OpenUrlAbstract
    1. Sasaki H.,
    2. Hogan B. L. M.
    (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47–59
    OpenUrlAbstract
    1. Sasaki H.,
    2. Hogan B. L. M.
    (1994) HNF-3as a regulator of floor plate development. Cell 76, 103–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasaki H.,
    2. Hui C.-c.,
    3. Nakafuku M.,
    4. Kondoh H.
    (1997) A binding site for Gli proteins is essential for HNF-3 floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322
    OpenUrlAbstract
    1. Shim E. Y.,
    2. Woodcock C.,
    3. Zaret K. S.
    (1998) Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev 12, 5–10
    OpenUrlAbstract/FREE Full Text
    1. Song D.-L.,
    2. Chalepakis G.,
    3. Gruss P.,
    4. Joyner A. L.
    (1996) Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122, 627–635
    OpenUrlAbstract
    1. Stone D. M.,
    2. Hynes M.,
    3. Armanini M.,
    4. Swanson T. A.,
    5. Gu Q.,
    6. Johnson R. L.,
    7. Scott M. P.,
    8. Pennica D.,
    9. Goddard A.,
    10. Phillips H.,
    11. Noll M.,
    12. Hooper J. E.,
    13. de Sauvage F.,
    14. Rosenthal A.
    (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanabe Y.,
    2. Jessell T. M.
    (1996) Diversity and pattern in the developing spinal cord. Science 274, 1115–1123
    OpenUrlAbstract/FREE Full Text
    1. Vortkamp A.,
    2. Franz T.,
    3. Gessler M.,
    4. Grzeschik K. H.
    (1992) Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutant extra toes (Xt). Mammalian Genome 3, 461–463
    OpenUrlCrossRefPubMedWeb of Science
    1. Weinstein D. C.,
    2. Ruiz i Altaba A.,
    3. Chen W. S.,
    4. Hoodless P.,
    5. Prezioso V. R.,
    6. Jessell T. M.,
    7. Darnell J. E.
    (1994) The winged-helix transcription factor HNF-3is required for notochord development in the mouse embryo. Cell 78, 575–588
    OpenUrlCrossRefPubMedWeb of Science
    1. Xie J.,
    2. Murone M.,
    3. Luoh S.-M.,
    4. Ryan A.,
    5. Qimin G.,
    6. Zhang C.,
    7. Bonifas J. M.,
    8. Lam C.-W.,
    9. Hynes M.,
    10. Goddard A.,
    11. Rosenthal A.,
    12. Epstein E. H. J.,
    13. de Sauvage F. J.
    (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Ye W.,
    2. Shimamura K.,
    3. Rubenstein J. L. R.,
    4. Hynes M. A.,
    5. Rosenthal A.
    (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and -independent mechanisms
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and -independent mechanisms
D.J. Epstein, A.P. McMahon, A.L. Joyner
Development 1999 126: 281-292;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and -independent mechanisms
D.J. Epstein, A.P. McMahon, A.L. Joyner
Development 1999 126: 281-292;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992