Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo
C.Y. Logan, J.R. Miller, M.J. Ferkowicz, D.R. McClay
Development 1999 126: 345-357;
C.Y. Logan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.R. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.J. Ferkowicz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.R. McClay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Beta-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether beta-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear beta-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, beta-catenin accumulates in nuclei that include the precursors of the endoderm and mesoderm, suggesting that it plays a role in vegetal specification. Using pharmacological, embryological and molecular approaches, we determined the function of beta-catenin in vegetal development by examining the relationship between the pattern of nuclear beta-catenin and the formation of endodermal and mesodermal tissues. Treatment of embryos with LiCl, a known vegetalizing agent, caused both an enhancement in the levels of nuclear beta-catenin and an expansion in the pattern of nuclear beta-catenin that coincided with an increase in endoderm and mesoderm. Conversely, overexpression of a sea urchin cadherin blocked the accumulation of nuclear beta-catenin and consequently inhibited the formation of endodermal and mesodermal tissues including micromere-derived skeletogenic mesenchyme. In addition, nuclear beta-catenin-deficient micromeres failed to induce a secondary axis when transplanted to the animal pole of uninjected host embryos, indicating that nuclear beta-catenin also plays a role in the production of micromere-derived signals. To examine further the relationship between nuclear beta-catenin in vegetal nuclei and micromere signaling, we performed both transplantations and deletions of micromeres at the 16-cell stage and demonstrated that the accumulation of beta-catenin in vegetal nuclei does not require micromere-derived cues. Moreover, we demonstrate that cell autonomous signals appear to regulate the pattern of nuclear beta-catenin since dissociated blastomeres possessed nuclear beta-catenin in approximately the same proportion as that seen in intact embryos. Together, these data show that the accumulation of beta-catenin in nuclei of vegetal cells is regulated cell autonomously and that this localization is required for the establishment of all vegetal cell fates and the production of micromere-derived signals.

Reference

    1. Armstrong N.,
    2. McClay D. R.
    (1994) Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Dev. Biol 162, 329–338
    OpenUrlCrossRefPubMedWeb of Science
    1. Benink H.,
    2. Wray G.,
    3. Hardin J.
    (1997) Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo. Development 124, 3461–3470
    OpenUrlAbstract
    1. Brannon M.,
    2. Gomperts M.,
    3. Sumoy L.,
    4. Moon R. T.,
    5. Kimelman D.
    (1997) A-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11, 2359–2370
    OpenUrlAbstract/FREE Full Text
    1. Brunner E.,
    2. Peter O.,
    3. Schweizer L.,
    4. Basler K.
    (1997) pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833
    OpenUrlCrossRefPubMed
    1. Cameron R. A.,
    2. Fraser S. E.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1991) Macromere cell fates during sea urchin development. Development 113, 1085–1091
    OpenUrlAbstract
    1. Cameron R. A.,
    2. Davidson E. H.
    (1991) Cell type specification during sea urchin development. Trends Genet 7, 212–218
    OpenUrlPubMedWeb of Science
    1. Cameron R. A.,
    2. Davidson E. H.
    (1997) LiCl perturbs ectodermal veg1 lineage allocations in Strongylocentrotus purpuratus embryos. Dev. Biol 187, 236–239
    OpenUrlCrossRefPubMedWeb of Science
    1. Cavallo R.,
    2. Rubenstein D.,
    3. Peifer M.
    (1997) Armadillo and dTCF: a marriage made in the nucleus. Curr. Opin. Genet. Dev 7, 459–466
    OpenUrlCrossRefPubMedWeb of Science
    1. Coffman J. A.,
    2. McClay D. R.
    (1990) A hyaline layer protein that becomes localized to the oral ectpderm and foregut of sea urchin embryos. Dev.Biol 140, 93–104
    OpenUrlCrossRefPubMed
    1. Davidson E. H.
    (1989) Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development 105, 421–445
    OpenUrlAbstract/FREE Full Text
    1. Davidson E. H.
    (1990) How embryos work: a comparative view of diverse modes of cell fate specification. Development 108, 365–389
    OpenUrlAbstract
    1. Davidson E. H.
    (1993) Later embryogenesis: regulatory circuitry in morphogenetic fields. Development 118, 665–690
    OpenUrlAbstract
    1. Emily-Fenouil F.,
    2. Ghilione C.,
    3. Lhomond G.,
    4. Lepage T.,
    5. Gache C.
    (1998) GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125, 2489–2498
    OpenUrlAbstract
    1. Ettensohn C. A.
    (1992) Cell interactions and mesodermal cell fates in the sea urchin embryo. Development 1992, 43–51
    1. Fagotto F.,
    2. Funayama N.,
    3. Gluck U.,
    4. Gumbiner B. M.
    (1996) Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J. Cell Biol 132, 1105–1114
    OpenUrlAbstract/FREE Full Text
    1. Funayama N.,
    2. Fagotto F.,
    3. McCrea P.,
    4. Gumbiner B. M.
    (1995) Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J. Cell. Biol 128, 959–968
    OpenUrlAbstract/FREE Full Text
    1. Ghiglione C.,
    2. Lhomond G.,
    3. Legpage T.,
    4. Gache C.
    (1993) Cell autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin development. EMBO J 12, 87–96
    OpenUrlPubMed
    1. Ghiglione C.,
    2. Emily-Fenouil F.,
    3. Chang P.,
    4. Gache C.
    (1996) Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos. Development 122, 3067–3074
    OpenUrlAbstract
    1. Haegel H.,
    2. Larue L.,
    3. Ohsugi M.,
    4. Fedorov L.,
    5. Herrenknecht K.,
    6. Kemler R.
    (1995) Lack of-catenin affects mouse development at gastrulation. Development 121, 3529–3537
    OpenUrlAbstract
    1. Harada Y.,
    2. Yasuo H.,
    3. Satoh N.
    (1995) A sea urchin homologue of the chordate Brachyury (T) gene is expressed in the secondary mesenchyme founder cells. Development 121, 2747–2754
    OpenUrlAbstract
    1. Harada Y.,
    2. Akasaka K.,
    3. Shimada H.,
    4. Peterson K. J.,
    5. Davidson E. H.,
    6. Satoh N.
    (1996) Spatial expression of a forkhead homologue in the sea urchin embryo. Mech. Dev 60, 163–173
    OpenUrlCrossRefPubMed
    1. Heasman J.
    (1997) Patterning the Xenopus blastula. Development 124, 4179–4191
    OpenUrlAbstract
    1. Heasman J.,
    2. Crawford A.,
    3. Goldstone K.,
    4. Garnerhamrick P.,
    5. Gumbiner B.,
    6. McCrea P.,
    7. Kintner C.,
    8. Noro C. Y.,
    9. Wylie C.
    (1994) Overexpression of cadherins and underexpression of-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803
    OpenUrlCrossRefPubMedWeb of Science
    1. Hedgepeth C. M.,
    2. Conrad L. J.,
    3. Zhang J.,
    4. Huang H.,
    5. Lee V. M. Y.,
    6. Klein P. S.
    (1997) Activation of the Wnt signaling pathway: a molecular mechanism for Lithium action. Dev. Biol 185, 82–91
    OpenUrlCrossRefPubMedWeb of Science
    1. Henry J. H.,
    2. Amemiya S.,
    3. Wray G. A.,
    4. Raff R. A.
    (1989) Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos. Dev. Biol 136, 140–153
    OpenUrlCrossRefPubMedWeb of Science
    1. Holy J.,
    2. Wessel G.,
    3. Berg L.,
    4. Gregg R. G.,
    5. Schatten G.
    (1995) Molecular characterization and expression patterns of a B-type nuclear lamin during sea urchin embryogenesis. Dev. Biol 168, 464–478
    OpenUrlCrossRefPubMed
    1. Hörstadius S.
    (1939) The mechanics of sea urchin development, studies by operative methods. Biol. Rev. Camb. Phil. Soc 14, 132–179
    OpenUrl
    1. Kelly G. M.,
    2. Erezyilmaz D. F.,
    3. Moon R. T.
    (1995) Induction of a secondary embryonic axis in zebrafish occurs following overexpression of beta-catenin. Mech. Dev 53, 261–273
    OpenUrlCrossRefPubMedWeb of Science
    1. Khaner O.,
    2. Wilt F.
    (1990) The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres. Development 109, 625–634
    OpenUrlAbstract
    1. Khaner O.,
    2. Wilt F.
    (1991) Interactions of different vegetal cells with mesomeres during early stages of sea urchin development. Development 112, 881–890
    OpenUrlAbstract
    1. Kintner
    (1992) Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell, 69, 225–236
    OpenUrlCrossRefPubMedWeb of Science
    1. Kitajima T.,
    2. Okazaki K.
    (1980) Spicule formation in vitro by the descendants of precocious micromere formed at the 8-cell stage of sea urchin embryo. Dev. Growth Diff 22, 265–279
    OpenUrlCrossRef
    1. Klein P. S.,
    2. Melton D. A.
    (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459
    OpenUrlAbstract/FREE Full Text
    1. Klingensmith J.,
    2. Nusse R.
    (1994) Signaling by wingless in Drosophila. Dev. Biol 166, 396–414
    OpenUrlCrossRefPubMedWeb of Science
    1. Kozlowski D. J.,
    2. Gagnon M. L.,
    3. Marchant J. K.,
    4. Reynolds S. D.,
    5. Angerer L. M.,
    6. Angerer R. C.
    (1996) Characterization of a SpAN promoter sufficient to mediate correct spatial regulation along the animal-vegetal axis of the sea urchin embryo. Dev. Biol 176, 95–107
    OpenUrlCrossRefPubMed
    1. Larabell C. A.,
    2. Torres M.,
    3. Rowning B. A.,
    4. Yost C.,
    5. Miller J. R.,
    6. Wu M.,
    7. Kimelman D.,
    8. Moon R. T.
    (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol 136, 1123–1136
    OpenUrlAbstract/FREE Full Text
    1. Lemaire P.,
    2. Kodjabachian L.
    (1996) The vertebrate organizer: structure and molecules. Trends Genet 12, 525–531
    OpenUrlCrossRefPubMedWeb of Science
    1. Livingston B. T.,
    2. Wilt F. H.
    (1989) Lithium evokes expression of vegetal specific molecules in the animal blastomeres of sea urchin embryos. Proc. Natl Acad. Sci. USA 86, 3669–3673
    OpenUrlAbstract/FREE Full Text
    1. Livingston B. T.,
    2. Wilt F. H.
    (1990) Range and stability of cell fate determination in isolated sea urchin blastomeres. Development 108, 403–410
    OpenUrlAbstract
    1. Logan C. Y.,
    2. McClay D. R.
    (1997) The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Development 124, 2213–2223
    OpenUrlAbstract
    1. Mao C. A.,
    2. Wikramanayake A. H.,
    3. Gan L.,
    4. Chuang C. K.,
    5. Summers R. G.,
    6. Klein W. H.
    (1996) Altering cell fates in sea urchin embryos by overexpressing SpOtx, an orthodenticle-related protein. Development 122, 1489–1498
    OpenUrlAbstract
    1. Maruyama Y. K.,
    2. Nakaseko Y.,
    3. Yagi S.
    (1985) Localization of cytoplasmic determinants responsible for primary mesenchyme formation and gastrulation in the unfertilized egg of the sea urchin Hemicentrotus pulcherrimus. J. Exp. Zool 236, 155–163
    OpenUrlCrossRefWeb of Science
    1. McClay D. R.
    (1986) Embryo dissociation, cell isolation, and cell reassociation. Meth. Cell Biol 27, 309–323
    OpenUrlPubMed
    1. McClay D. R.,
    2. Logan C. Y.
    (1996) Regulative capacity of the archenteron during gastrulation in the sea urchin. Development 122, 607–616
    OpenUrlAbstract
    1. Miller J. R.,
    2. Moon R. T.
    (1996) Signal transduction through-catenin and specification of cell fate during embryogenesis. Genes Dev 10, 2527–2539
    OpenUrlFREE Full Text
    1. Miller J. R.,
    2. Moon R. T.
    (1997) Analysis of the signaling activities of localization mutants of beta-catenin during axis specification in Xenopus. J. Cell. Biol 139, 229–243
    OpenUrlAbstract/FREE Full Text
    1. Miller J. R.,
    2. McClay D. R.
    (1997) Changes in the pattern of adherens junction associated-catenin accompany morphogenesis in the sea urchin embryo. Dev. Biol 192, 323–339
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller J. R.,
    2. McClay D. R.
    (1997) Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev. Biol 192, 310–322
    OpenUrlCrossRefPubMedWeb of Science
    1. Molenaar M.,
    2. van de Wetering M.,
    3. Oosterwegel M.,
    4. Peterson Maduro J.,
    5. Godsave S.,
    6. Korinek V.,
    7. Roose J.,
    8. Destree O.,
    9. Clevers H.
    (1996) XTcf-3 transcription factor mediates-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Moon R. T.,
    2. Brown J. D.,
    3. Torres M.
    (1997) Wnts modulate cell fate and behavior during vertebrate development. Trends Genet 13, 157–162
    OpenUrlCrossRefPubMedWeb of Science
    1. Nocente-McGrath C.,
    2. McIsaac R.,
    3. Ernst S. G.
    (1991) Altered cell fate in LiCl-treated sea urchin embryos. Dev. Biol 147, 445–450
    OpenUrlCrossRefPubMedWeb of Science
    1. Nusse R.,
    2. Varmus H.
    (1992) Wnt genes. Cell 69, 711–719
    OpenUrl
    1. Okazaki K.
    (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Amer. Zool 15, 567–581
    OpenUrl
    1. Orsulic S.,
    2. Peifer M.
    (1996) An in vivo structure-function study of Armadillo, the-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J. Cell Biol 134, 1283–1300
    OpenUrlAbstract/FREE Full Text
    1. Ransick A.,
    2. Davidson E. H.
    (1993) A complete second gut induced by transplanted micromeres in the sea urchin embryo. Science 259, 1134–1138
    OpenUrlAbstract/FREE Full Text
    1. Ransick A.,
    2. Davidson E. H.
    (1995) Micromeres are required for normal vegetal plate specification in sea urchin embryos. Development 121, 3215–3222
    OpenUrlAbstract
    1. Ransick A.,
    2. Davidson E. H.
    (1998) Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo. Dev. Biol 195, 38–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruffins S. W.,
    2. Ettensohn C. A.
    (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122, 253–263
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1992) Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. Development 116, 81–93
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Prezioso V. R.,
    3. Darnell J. E.,
    4. Jessell T. M.
    (1993) Sequential expression of HNF-3and HNF-3 by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech. Dev 44, 91–108
    OpenUrlCrossRefPubMedWeb of Science
    1. Schneider S.,
    2. Steinbeisser H.,
    3. Warga R. M.,
    4. Hausen P.
    (1996) -catenin translocation into nuclei demarcates the dorsalizing centers of frog and fish embryos. Mech. Dev 57, 191–198
    OpenUrlCrossRefPubMedWeb of Science
    1. Sherwood D. R.,
    2. McClay D. R.
    (1997) Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation. Development 124, 3363–3374
    OpenUrlAbstract
    1. Smith J. C.,
    2. Price B. M. J.,
    3. Green J. B. A.,
    4. Weigel D.,
    5. Hermann B. G.
    (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate early response to mesoderm induction. Cell 67, 79–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Stambolic V.,
    2. Reul L.,
    3. Woodgett J. R.
    (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signaling in intact cells. Curr. Biol 6, 1664–1668
    OpenUrlCrossRefPubMedWeb of Science
    1. van de Wetering M.,
    2. Cavallo R.,
    3. Dooijes D.,
    4. van Beest M.,
    5. van Es J.,
    6. Loureiro J.,
    7. Ypma A.,
    8. Hursh D.,
    9. Jones T.,
    10. Bejsovec A.,
    11. Peifer M.,
    12. Mortin M.,
    13. Clevers H.
    (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799
    OpenUrlCrossRefPubMedWeb of Science
    1. Wei Z.,
    2. Angerer L. M.,
    3. Gagnon M. L.,
    4. Angerer R. C.
    (1995) Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo. Dev. Biol 171, 195–211
    OpenUrlCrossRefPubMedWeb of Science
    1. Wei Z.,
    2. Angerer L. M.,
    3. Angerer R. C.
    (1997) Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis. Dev. Biol 187, 71–78
    OpenUrlCrossRefPubMed
    1. Wessel G. M.,
    2. McClay D. R.
    (1985) Sequential expression of germ-layer specific molecules in the sea urchin embryo. Dev.Biol 111, 451–463
    OpenUrlCrossRefPubMed
    1. Willert K.,
    2. Nusse R.
    (1998) B-catenin: A key mediator of Wnt signaling. Curr. Opin. Genet. Dev 8, 95–102
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilt F. H.
    (1987) Determination and morphogenesis in the sea urchin embryo. Development 100, 559–575
    OpenUrlAbstract/FREE Full Text
    1. Yost C.,
    2. Torres M.,
    3. Miller J. R.,
    4. Huang E.,
    5. Kimelman D.,
    6. Moon R. T.
    (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase-3. Genes Dev 10, 1443–1454
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo
C.Y. Logan, J.R. Miller, M.J. Ferkowicz, D.R. McClay
Development 1999 126: 345-357;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo
C.Y. Logan, J.R. Miller, M.J. Ferkowicz, D.R. McClay
Development 1999 126: 345-357;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992